Книга Кислород. Молекула, изменившая мир, страница 18. Автор книги Ник Лэйн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кислород. Молекула, изменившая мир»

Cтраница 18

Идея о том, что клетки могут защититься от кислорода, объединяясь с другими клетками, в долгосрочном плане может иметь еще более серьезные последствия. Если современные анаэробные эукариотические клетки, такие как клетки простейших ресничных, поместить в насыщенную кислородом воду, они попытаются уплыть в область с меньшим содержанием кислорода. Причем чем больше в воде кислорода, тем быстрее они поплывут. Но если плыть некуда? Если вся окружающая среда насыщена кислородом в равной степени и бегство бесполезно, клетки реализуют запасной план — они группируются, образуя агрегаты клеток. Дажe анаэробные клетки могут поглотить какое-то количество кислорода, но, когда клетки слипаются в один комок, каждая выигрывает за счет того, что соседи тоже поглощают кислород. Другие сообщества живых клеток тоже получают преимущества от подобного распределения нагрузки. Например, в строматолитах кроме цианобактерий обитает множество других типов клеток, включая анаэробные бактерии. Только верхний слой строматолита толщиной несколько миллиметров состоит исключительно из фотосинтезирующих цианобактерий, а в более глубоких слоях живут миллиарды анаэробных клеток, хотя уровень кислорода в этой среде в дневные часы достаточно высокий. Здесь тоже каждая клетка выигрывает из-за перераспределения кислородной нагрузки.

Таким образом, подъем уровня кислорода мог способствовать формированию сообществ клеток, из которых возникла самая эффективная система энергетического обеспечения жизни — многочисленные внутриклеточные митохондрии [18], а также первые многоклеточные организмы. Возможно, тенденция клеток образовывать агрегаты, чтобы спастись от токсичного влияния кислорода, стала той движущей силой, которая привела к эволюции многоклеточных организмов. Все истинные многоклеточные организмы содержат митохондрии. Среди нескольких тысяч видов простых эукариот, не имеющих митохондрий [19], многоклеточных организмов нет. Таким образом, человека можно рассматривать в качестве ассоциаций клеток и клеток внутри клеток. В главе 8 мы увидим, что строение человеческого тела действительно связано с доставкой кислорода к отдельным клеткам организма: многоклеточная организация до сих пор служит для тех же самых целей, что и у наших одноклеточных предков, собиравшихся группами.

Докембрийский период подходил к концу. Мы с вами совершили путешествие длиной в 3 млрд лет. Смотреть, в общем-то, в этот период было не на что, но все же очень многое изменилось. Без этих изменений невозможно себе представить начавшийся вскоре расцвет многоклеточной жизни. И я утверждаю, что произошедшие изменения связаны с повышением содержания кислорода в атмосфере.

Подведем некоторые итоги. Первые признаки жизни (в виде изотопных подписей углерода в горах западной части Гренландии) относятся к периоду около 3,85 млрд лет назад. Старейшие микроскопические окаменелости, напоминающие современных цианобактерий, и крупные строматолиты имеют возраст порядка 3,5 млрд лет. Если факты нас не обманывают, эти цианобактерии уже производили кислород. Однако первые окончательные доказательства существования цианобактерий, а также наших с вами предков-эукариот в форме биохимических маркеров в горных породах относятся к гораздо более позднему времени — их возраст составляет около 2,7 млрд лет. Эти эукариоты производили стерины для своих мембран, для чего нужен кислород. На основании анализа активности сульфатредуцирующих бактерий мы знаем, что уровень кислорода в воздухе в это время вырос и составлял уже около 1% современного уровня. Еще через 500 млн лет, примерно 2,2 млрд лет назад, уровень кислорода повысился еще больше, и случилось это в конце периода сильнейшего оледенения Земли («Земля-снежок»). Затем последовала череда серьезных геологических катаклизмов, когда в результате осаждения железа из океанов во многих местах возникли гигантские полосатые железные горы. Для образования как минимум некоторых из них нужен был свободный кислород. К этому же времени, 2,1 млрд лет назад, относятся первые ископаемые остатки эукариот. У нас есть твердые, как камень, доказательства накопления кислорода в воздухе: палеопочвы, континентальные красноцветные отложения и природные урановые реакторы. Уровень кислорода в атмосфере в это время составлял от 5 до 18% по отношению к современному. В камнях наблюдается внезапное увеличение разнообразия ископаемых эукариот. Многие из них имеют митохондрии. Все элементы современного мира, за исключением истинных многоклеточных организмов, уже на месте.

Затем наступает период затишья. На протяжении миллиарда лет уровень кислорода остается постоянным. Однако во время этого длительного застоя происходят важные эволюционные изменения: расцвет эукариот, расширение генетического разнообразия, колонизация новых экологических ниш и первые шаги к формированию многоклеточных организмов (водорослей). Но при всем этом спокойном прогрессе на протяжении миллиарда лет не возникло ничего более сложного, чем скользкие зеленые волокна. Ничто не предвещало грядущих изменений. Внезапно (в геологическом временном масштабе) 543 млн лет назад на свете возникло все, что мы видим вокруг себя сейчас. Что же произошло?


Глава четвертая. Подготовка кембрийского взрыва. «Земля-снежок», изменения условий и первые животные

Кембрийский взрыв — внезапный расцвет многоклеточной жизни в начале кембрийского периода — всегда привлекал внимание самых знаменитых биологов еще со времен Дарвина. Почему расцвет оказался столь внезапным? Да и был ли он внезапным? Дарвин полагал, что естественный отбор — процесс постепенных кумулятивных изменений — не мог объяснить быстрого появления ископаемых животных в горных породах кембрийского периода. Он, как и многие после него, полагал, что кембрийский взрыв — какое-то отклонение. Если бы удалось найти более древние окаменелости, это доказывало бы, что кембрийские животные эволюционировали медленнее, что долгий докембрийский период был подготовкой кембрийского взрыва. Эта точка зрения не лишена ocнований, поскольку большинство ископаемых кембрийского периода, известных во времена Дарвина, представляли собой окаменевшие раковины, в которых содержалось очень мало окаменевших останков мягких тканей их прежних обитателей. Некоторые полагали, что мягкие ткани не защищенных раковинами предшественников истлели, не окаменев. Быть может, кембрийский взрыв — всего лишь взрыв эволюции раковин?

Открытие Берджес-Шейл продемонстрировало несостоятельность этой идеи. Сланцевая формация, обнаруженная в канадской части Скалистых гор Чарлзом Дулиттлом Уолкоттом из Смитсоновского института в самом начале ХХ в., содержит такое поразительное разнообразие прекрасно сохранившихся мягких частей животных, что сейчас они фактически считаются эталоном. Многие из этих окаменелостей, исследованных Уолкоттом, были «втиснуты» (как позднее выразился эволюционный биолог Стивен Джей Гулд) в рамки современных таксономических групп. Пересмотр их классификации Гарри Уиттингтоном, Дереком Бриггсом и Саймоном Конвеем Моррисом из Кембриджского университета стал предметом книги Гулда «Удивительная жизнь», опубликованной в 1989 г. В лучах яркого света и под микроскопом ученые из Кембриджа восстановили анатомическое строение многочисленных странных двустороннесимметричных созданий и разместили этих невероятных cуществ в отдельные таксономические группы. Их названия говорят сами за себя: Hallucigenia, Anomalocaris, Odontogriphus — никто из них, кажется, не имеет современных аналогов. С глазами на стебельках, в броне, с челюстями-задвижками — эти монстры больше похожи на марсиан из мультфильмов, чем на земных животных.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация