В процессе фотосинтеза Рубиско связывает углекислый газ и включает его в углеводы. Часто (и вполне оправданно) Рубиско называют самым важным в мире ферментом. Во всяком случае, если судить по массе, это самый распространенный на Земле фермент. Без него фотосинтез в современной форме существовать не может. А с Рубиско возникают другие проблемы. Он относится к разряду «неразборчивых» ферментов. Он практически с одинаковым сродством связывает и кислород, и углекислый газ. Когда Рубиско связывает свой «законный» субстрат, СО2, растение использует углерод для созидательных целей, синтезируя сахара, жиры и белки. Но если фермент изменяет своему субстрату и связывает кислород, множество других ферментов начинают катализировать бессмысленную цепь биохимических реакций. Эта энергозатратная цепь реакций останавливает рост растения, как сомнительная репутация политика — его продвижение по ступеням власти.
Скорость фотодыхания увеличивается с ростом температуры и концентрации кислорода. Это означает, что в жарком климате и при обилии кислорода рост растений останавливается. Даже при нормальном содержании кислорода в воздухе в тропических зонах это бессмысленное растрачивание ресурсов может затормозить рост растений на 40%. Это явление сказывается на производительности сельского хозяйства, xотя негативный эффект в какой-то степени сглаживается благодаря большому количеству осадков, плодородию почв и продолжительности сельскохозяйственного сезона.
Несмотря на кажущуюся бессмысленность, фотодыхание — универсальный процесс, происходящий во всех растениях, хотя некоторые из них изобрели обходные пути, позволяющие снизить пагубные последствия
[26]. По каким-то причинам эволюция сохранила этот механизм. Другими словами, он для чего-то нужен, иначе он бы исчез в жестокой борьбе за выживание. Это предположение подтверждается многочисленными неудачными попытками вывести растения, в которых механизм фотодыхания не реализуется. Часто целью подобных экспериментов было повышение урожайности сельскохозяйственных культур в развивающихся странах. Удивительно, но такие генетически модифицированные растения не могут жить в нормальных условиях и выживают только в атмосфере с высоким содержанием углекислого газа и низким содержанием кислорода. По-видимому, фотодыхание в какой-то степени защищает растение от токсичного воздействия кислорода. Это объясняет, почему растения могут обойтись без фотодыхания при низком содержании кислорода в воздухе, но не в атмосфере с нормальной или повышенной его концентрацией. Для нас важно, что фотодыхание останавливает рост растений при высоком содержании кислорода в воздухе.
Фотодыхание настолько распространенный процесс, что оно вполне может быть одним из основных факторов, стабилизирующих содержание кислорода в атмосфере. Если уровень кислорода повышается, сразу возрастает интенсивность фотодыхания, что приводит к остановке роста растений. Низкорослые растения производят меньше кислорода, способствуя снижению концентрации кислорода до прежнего уровня. Интересно, что эта гипотеза не подразумевает постоянства скорости захоронения органического материала. Напротив. В принципе, скорость захоронения органических веществ связана со скоростью роста растений: нет роста — нет захоронения органического углерода, и наоборот. Однако остается эмпирический вопрос: может ли на самом деле фотодыхание определять концентрацию кислорода в воздухе и скорость захоронения органического материала?
Точного ответа мы пока не знаем, но данную гипотезу можно проверить экспериментальным путем. Результаты некоторых исследований показывают, что фотодыхание, безусловно, играет важную роль в поддержании постоянной концентрации кислорода в атмосфере, но одного этого механизма недостаточно. К такому выводу пришли Дэвид Бирлинг и его коллеги из Университета Шеффилда, опубликовавшие результаты исследований в журнале Philosophical Transactions of the Royal Society в 1998 г. Они измеряли скорость роста растений при различной концентрации кислорода в диапазоне от 21 до 35%. В среднем при 25 °C в среде с высоким содержанием кислорода растения росли на 18% медленнее, чем в обычной атмосфере, что подтверждало влияние кислорода на скорость роста растений. Однако величина эффекта для разных растений различалась: более древние группы растений держались гораздо лучше их современных родственников. Растения, появившиеся во время каменноугольного периода, такие как папоротники, гинкго и цикадовые (напоминающие пальму вечнозеленые растения, но не с орехами, а с шишками), менее чувствительны к повышению концентрации кислорода, чем их более молодые в эволюционном плане родственники — покрытосеменные (самая обширная группа современных растений, к которой относятся листопадные деревья и кусты, основные сельскохозяйственные культуры и все другие травянистые культуры и цветы). Кроме того, более древние растения, по-видимому, способны адаптироваться к новым условиям путем изменения структуры листьев. В частности, у них увеличивалось количество устьиц (пор в листьях, через которые осуществляется газообмен), что способствовало более активному накоплению углекислого газа в листьях.
Рис. 5. Изменения состава атмосферы на протяжении фанерозойского периода на основе модели Роберта Бернера. Концентрация кислорода (верхний график) достигла максимального значения около 35% в конце каменноугольного (C) и начале пермского периода (P), а затем снизилась до 15% в конце пермского периода. Второй пик концентрации кислорода (от 25 до 30%) пришелся на конец мелового периода (K). Затем в третичном периоде (T) произошло уменьшение до современного уровня. Концентрация углекислого газа (нижний график) снизилась от 0,5% в силурийском периоде (S) до 0,03% к концу каменноугольного периода. Воспроизводится с разрешения авторов из статьи Graham et al.
Интересно, что при увеличении концентрации углекислого газа в воздухе в два раза (от 300 до 600 ррm) рост растений не замедлялся, а иногда и усиливался. Поскольку обычно содержание углекислого газа падает при повышении содержания кислорода, большинство геологов соглашаются с тем, что уровень углекислого газа снизился с максимального значения 3000 ppm в девонском периоде (385 млн лет назад) до минимального значения 300 ррm в конце пермского периода (245 млн лет назад) (рис. 5). Таким образом, на протяжении каменноугольного периода содержание углекислого газа в атмосфере могло быть выше, чем сейчас. В целом группа Шеффилда пришла к выводу, что высокая концентрация кислорода в воздухе во время каменноугольного и в начале пермского периода могла привести лишь к замедлению роста растений в тропических регионах.
Вполне возможно, что активность метаногенных бактерий, наличие питательных веществ и фотодыхание корректируют уровень кислорода в нормальных условиях, но, скорее всего, они лишь притупляли значительные колебания уровня кислорода в конце каменноугольного и начале пермского периода, предсказанные на основании высокой скорости захоронения углерода. Пожалуй, пришло время подробнее обсудить события, происходившие на протяжении 70 млн лет — от 330 до 260 млн лет назад. В этот период, составляющий менее 2% истории Земли, образовалось 90% всех резервов ископаемого угля. Это означает, что скорость захоронения углерода в этот период была в 600 раз выше, чем в другие геологические эпохи. Конечно, бóльшая часть органического материала не превратилась в уголь (см. главу 2), но системный анализ органической составляющей осадочных пород во всем мире подтверждает, что общее количество органического материала, захороненного во время каменноугольного и в начале пермского периода, намного больше, чем в любую другую эпоху, включая современность
[27].