У Шапелля и Пека родилась интересная идея. А вдруг размер связан не с температурой воды, а с концентрацией растворенного кислорода? Кислород лучше растворяется в холодной воде, и его растворимость в полярных регионах примерно в два раза выше, чем в тропиках. Растворимость кислорода зависит еще и от содержания соли: она на 25% выше в пресной воде, чем в соленой. Таким образом, максимальная растворимость кислорода достигается в пресноводных озерах арктической тундры (включая озеро Байкал), и именно там встречаются самые крупные ракообразные. Когда Шапелль и Пек построили график зависимости размера тела животных от концентрации кислорода в воде, они получили почти идеальную прямую линию (рис. 6). Конечно, корреляция не объясняет механизма, но вполне возможно, что недостаточность кислорода ограничивает размер многих видов организмов. Напротив, высокая концентрация кислорода позволяет увеличивать размер тела.
Зависимость метаболизма «гигантов» от доступности кислорода означает, что они могут погибнуть при снижении уровня кислорода в атмосфере. В конце статьи Шапелль и Пек предсказывают, что при глобальном потеплении или при сокращении концентрации кислорода гигантские амфиподы исчезнут одними из первых. Трудно себе представить. какое влияние это окажет на всю пищевую цепь.
Таким образом, невозможно отрицать колебания концентрации кислорода в атмосфере в разные геологические периоды. Этот вывод противоречит выдвинутой Лавлоком теории Геи, в соответствии с которой живая биосфера сама контролировала уровень кислорода на протяжении последних 500 млн лет. Возможно, для каких-то периодов времени это так, но иногда биосфера теряла контроль над данным параметром.
Рис. 6. Корреляция между размером тела амфипод (в виде усредненного показателя TS95/5, мм) и температурой (а) или концентрацией кислорода (б). На верхнем графике данные для озера Байкал, Каспийского и Черного морей выпадают из общей зависимости, поскольку вода в них либо пресная, либо слабосоленая. Кислород лучше растворяется в пресной воде, и зависимость размера тела от концентрации растворенного кислорода имеет линейный вид. Воспроизводится с разрешения авторов из статьи Chapelle & Peck, Nature
Тот факт, что Гея не в состоянии постоянно поддерживать физиологический баланс, усиливает беспокойство Лавлока по поводу антропогенного влияния на планету. Учитывая неоспоримые доказательства нескольких глобальных оледенений, ясно, что Гея не имеет полного контроля над температурой. По-видимому, то же самое относится и к содержанию кислорода в воздухе. Мы не очень хорошо представляем себе, какие именно факторы контролируют уровень кислорода или углекислого газа, но равновесие уже несколько раз нарушалось, так что это может повториться и, возможно, с нашей помощью. Механизмы обратной связи, о которых говорили Лавлок и другие ученые, какое-то время могут сдерживать изменения. Но если судить по колебаниям концентрации кислорода в прошлом, возможности таких механизмов не безграничны, и они не могут противостоять катастрофическим сдвигам. Об этом нельзя забывать.
За исключением опасности возникновения пожаров, у нас практически нет никаких серьезных доказательств негативного влияния на развитие жизни высокой концентрации кислорода. Напротив, она, возможно, в свое время открыла эволюционные пути, которые сегодня закрыты. Снижение концентрации кислорода перекрывает эти пути, и какие-то виды организмов исчезают. Например, большинство гигантов каменноугольного периода не дожили до конца пермского периода, когда, по расчетам Роберта Бернера, уровень кислорода снизился до 15%, а климат стал более прохладным и сухим.
Мы вынуждены заключить, что много кислорода — хорошо, а мало кислорода — плохо. Однако в главе 1 мы говорили о том, что кислород в высокой концентрации токсичен, нарушает функцию легких, вызывает конвульсии, кому и смерть, а радикалы кислорода считаются причиной старения и развития заболеваний. Так чему же верить: токсичен кислород или нет? Об этом парадоксе упоминали авторы книги «Свободные радикалы в биологии и медицине» Барри Холлиуэлл и Джон Гаттридж, которые лаконично заметили, что «растения и животные каменноугольного периода, по-видимому, усиливали антиоксидантную защиту, которую весьма интересно было бы изучить, если бы такие виды организмов появились вновь». Конечно, интересно! Как им удалось преодолеть токсичное влияние кислорода? Можем ли мы в какой-то степени использовать тот же механизм, чтобы защитить себя от опасных радикалов? Пришло время подробнее ознакомиться со странной токсичностью кислорода и с тем, как природа с ней борется.
Глава шестая. Предательство в воздухе. Отравление кислородом и ультрафиолетовое излучение — общность механизмов
В 1891 г.робкая двадцатичетырехлетняя польская девушка по имени Мария Саломея Склодовская прибыла в Париж, чтобы воплотить в жизнь свою мечту — стать ученым. В шовинистически настроенных научных кругах Франции того времени эта мечта вряд ли могла осуществиться, но Мария обладала блестящим умом, невероятной настойчивостью и не боялась трудностей. Мать девушки умерла, когда той было всего четыре года. Младшая из пяти детей в семье, она воспитывалась в бедности отцом-идеалистом. Польша в те годы являлась частью Российской империи. Мария училась в так называемом Летучем университете, который переезжал каждую неделю, поскольку был подпольной организацией. Поляки сопротивлялись политизации образования, и польская культура развивалась в подполье. Не удивительно, что страсть к учению оставила глубокий след в характере Марии.
Когда Марии исполнилось 18 лет, они с сестрой Брониславой договорились работать по очереди, чтобы помочь друг другу оплатить обучение. Сначала Бронислава отправилась в Париж, чтобы получить медицинское образование, а Мария на протяжении шести лет работала гувернанткой. При этом она продолжала подпольное обучение химии и математике и пережила несчастную любовь. Бронислава закончила учиться и вышла замуж за своего однокурсника. Теперь уже Мария приехала в Париж вполне подготовленной студенткой и поступила в Сорбонну. В 1893 г. она блестяще защитилась и получила степень магистра по физике, а в 1894 г. — по математике. Она искала место для самостоятельных исследований, и ее познакомили с не менее одаренным и свободомыслящим французским ученым, который уже составил себе репутацию благодаря трудам по кристаллографии и магнетизму. Они полюбили друг друга, и он писал ей о том, как хорошо было бы «прожить жизнь бок о бок, реализуя наши мечты: твои патриотические мечты, наши гуманистические мечты и наши научные мечты». Мария и Пьер поженились в 1895 г. и провели медовый месяц в поездке по Франции. Когда к Марии пришла научная известность, она носила имя Мария Кюри.
Затем Пьер получил место преподавателя, а Мария продолжала учиться, чтобы получить право преподавать. В 1897 г. родилась их первая дочь Ирен, и в этом же году Мария начала работу над диссертацией — еще один невероятный шаг для женщины того времени. Она стала первой женщиной в Европе, получившей степень доктора наук.