Книга Кислород. Молекула, изменившая мир, страница 43. Автор книги Ник Лэйн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кислород. Молекула, изменившая мир»

Cтраница 43

В рамках традиционного представления о развитии жизни на нашей планете затраты на расщепление воды и производство кислорода и связанные с ними трудности представляют собой эволюционный парадокс. Обычно решение этой загадки видят в естественном отборе. Допустим, в какой-то момент запасы сероводорода и растворенного железа подошли к концу, и жизнь вынуждена была адаптироваться к другому источнику энергии, такому как вода. Возможно, но при таком способе рассуждений возникает замкнутый круг. Гигантские геохимические запасы сероводорода и железа могли подойти к концу только в результате окисления каким-нибудь веществом, и самым вероятным (если не единственным) кандидатом на эту роль является кислород. Но до изобретения фотосинтеза в атмосфере не было свободного кислорода. Только фотосинтез может произвести ощутимое количество свободного молекулярного кислорода (О2). Таким образом, единственный путь создания достаточно сильного давления, благоприятствующего эволюции фотосинтеза, проходит через фотосинтез.

Однако этот аргумент не только бессмысленный, но и просто неверный. Анализ биомаркеров цианобактерий показывает, что оксигенный фотосинтез эволюционировал более 2,7 млрд лет назад. Но растворенное в океанах железо продолжало осаждаться в виде полосатых гор еще как минимум миллиард лет (см. главу 3). Так что никак нельзя утверждать, что запасы солей железа подошли к концу. Аналогичным образом, высокая концентрация сероводорода в океанских глубинах сохранялась вплоть до появления первых крупных животных, вендобионтов, и периодически обнаруживается еще и сегодня (см. главу 4). Так что приходится заключить, что оксигенный фотосинтез появился до исчерпания запасов железа и сероводорода, по крайней мере во всепланетном масштабе.

Как и почему он появился? Если вы внимательно читали предыдущую главу, вы должны знать ответ на этот вопрос. Некоторые косвенные данные указывают на то, что такой же окислительный стресс, как на Марсе (см. главу 6), стал причиной эволюции фотосинтеза на Земле. Детали этого процесса удивительно интересны и позволяют понять происхождение устойчивости к токсическому действию кислорода — по-видимому, неотъемлемому свойству самых первых форм жизни на Земле. Первые известные бактерии не производили кислород в процессе фотосинтеза, но могли «дышать» кислородом, иными словами, производить энергию за счет дыхания кислородом еще до появления этого газа в воздухе. Чтобы понять, как это возможно и какое отношение это имеет к нашей сегодняшней жизни, следует изучить механизм фотосинтеза и пути его эволюции.


Среди всех форм фотосинтеза только знакомый нам оксигенный фотосинтез в растениях, водорослях и цианобактериях является источником кислорода. Все другие формы так называемого аноксигенного фотосинтеза не производят кислород и являются более древними и более простыми по сравнению с оксигенной формой. Перед растениями не стоит задача произвести для нас кислород, им фотосинтез нужен для получения энергии и атомов водорода. Все формы фотосинтеза объединяет одно: они используют солнечную энергию для производства химической (в форме АТФ), необходимой для соединения водорода с углекислым газом с последующим синтезом углеводов. Разные формы фотосинтеза используют разные источники водорода: это может быть вода, сероводород, соли железа или любое химическое вещество, содержащее водород.

В целом в процессе фотосинтеза в растениях углекислый газ (СО2) из воздуха превращается в простые органические молекулы, такие как сахара (общая формула СН2О). Затем в митохондриях эти сахара сжигаются с образованием дополнительного АТФ (см. главу 3), а также превращаются в другие углеводы, липиды, белки и нуклеиновые кислоты, из которых строятся клетки. В главе 5 мы узнали о самом распространенном на планете ферменте Рубиско, который включает водород в молекулу углекислого газа. Однако, чтобы фермент работал, его нужно снабжать исходными материалами. Углекислый газ содержится в воздухе и растворен в океанской воде, так что с ним все просто. Получить водород сложнее — он очень быстро вступает в реакции (особенно с кислородом с образованием воды) и настолько легкий, что улeтучивается в космическое пространство. Таким образом, для доставки водорода нужна специализированная система. На самом деле в этом и заключается суть фотосинтеза, но на протяжении многих лет никто ее не понимал. Забавно, что ученые открыли механизм фотосинтеза только тогда, когда поняли, откуда берется кислород.

При оксигенном фотосинтезе водород происходит из воды, а вот происхождение кислорода точно неизвестно. Из суммарного уравнения фотосинтеза следует, что кислород берется либо из углекислого газа, либо из воды:


2 + 2Н2O → (СН2О) + Н2О + О2


Сначала ученые думали, что кислород происходит из углекислого газа. Это вполне логичное, но, как оказалось, совершенно неверное предположение. Ошибка была обнаружена в 1931 г., когда Корнелис ван Нил показал, что один штамм фотосинтезирующей бактерии в присутствии света использует углекислый газ и сероводород (Н2S) для производства углеводородов и серы, но при этом не выделяет кислород:


СО2 + 2Н2S → (СН2О) + Н,2O + 2S


На основании химического сходства между молекулами Н2S и H2О он предположил, что растения могут извлекать кислород вовсе не из углекислого газа, а из воды и что суть фотосинтеза в обоих случаях одна и та же. Справедливость этого предположения в 1937 г. доказал Роберт Хилл, который обнаружил, что при замене углекислого газа феррицианидом железа (который не содержит кислорода) растения перестают расти, но продолжают производить кислород. Наконец, в 1941 г., когда был выделен тяжелый изотоп кислорода 18О, Сэмюэл Рубен и Мартин Кеймен попробовали выращивать растения на воде, содержащей тяжелый изотоп кислорода. Выделяемый растениями кислород состоял исключительно из тяжелого изотопа, происходившего из воды. Это позволило окончательно подтвердить, что кислород при фотосинтезе берется не из углекислого газа, а из воды.

Таким образом, при оксигенном фотосинтезе из воды экстрагируются атомы водорода (точнее, протоны (Н+) и электроны (е-)), а ненужный растениям кислород выделяется в воздух. Воду расщеплять трудно, поэтому единственное преимущество заключается в ее доступности. Для экстракции протонов и электронов из воды нужно гораздо больше энергии (примерно в полтора раза), чем для их извлечения из сероводорода. Для получения этой дополнительной энергии необходим специальный «высоковольтный» молекулярный механизм, который, по-видимому, эволюционировал на основе «низковольтного» фотосинтетического аппарата, ранее применявшегося для расщепления сероводорода. Чтобы понять, как это произошло, нужно подробнее изучить механизм фотосинтеза.


Вне зависимости от того, какая молекула (сероводород или вода) является источником атомов водорода, возбуждение атомов происходит за счет энергии электромагнитного излучения, которое мы называем солнечным светом. Все электромагнитные лучи, включая свет, состоят из множества фотонов, каждый из которых обладает определенной энергией. Энергия фотона связана с длиной волны света, измеряемой в нанометрах. Чем меньше длина волны, тем больше энергия. Это означает, что фотоны ультрафиолетового света (длина волны менее 400 нм) обладают более высокой энергией, чем фотоны красного света (длина волны от 600 до 700 нм), которые, в свою очередь имеют бóльшую энергию, чем инфракрасные фотоны (длина волны 800 нм).

Вход
Поиск по сайту
Ищем:
Календарь
Навигация