Книга Кислород. Молекула, изменившая мир, страница 63. Автор книги Ник Лэйн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кислород. Молекула, изменившая мир»

Cтраница 63

Каждое звено в этой цепи необходимо для нормальной работы всей системы. Тот факт, что нейтрофилы защищают себя, накапливая витамин С, а бактерии этого не делают, объясняется тем, что бактерии либо не могут детектировать дегидроаскорбат, либо не умеют его поглощать. Вся цепь событий в нейтрофилах запускается в присутствии дегидроаскорбата. Чем больше этого вещества, тем быстрее работает насос. Вообще говоря, активация нейтрофилов может происходить даже без участия бактерий, лишь при наличии в среде небольшого количества дегидроаскорбата. Напротив, бактерии не оживляются даже в море дегидроаскорбата. У них есть все, что нужно для синтеза витамина С, витамина Е и глутатиона, а также для связывания железа и меди, но они не чувствуют присутствия дегидроаскорбата. И это может стоить им жизни. В таком случае все затраты нейтрофилов оправданы.

Самым удивительным в этом сценарии является перестройка метаболизма нейтрофилов при появлении дегидроаскорбата, которая вносит вклад в общую антиоксидантную реакцию. Мы не можем определить антиоксидант как молекулу с конкретным типом действия. Обнаружение дегидроаскорбата — антиоксидантная реакция. Связывание железа — антиоксидантная реакция. Регенерация глутатиона — тоже. Даже снижение скорости метаболизма (сдерживание дыхания) — тоже антиоксидантная реакция. Невозможно провести черту между факторами, которые принято называть антиоксидантами (такими, как витамин С), и физиологическими адаптациями, обычно не воспринимаемыми в качестве проявлений антиоксидантных свойств (как замедление клеточного дыхания). Чтобы проанализировать работу этой сложной сети взаимодействий, нам придется отвлечься от витамина С и посмотреть, как организм в целом реагирует на окислительный стресс.


Глава десятая. Машина по производству антиоксидантов. Сто и один способ жить в окружении кислорода

Правительства занимаются определениями таких понятий, как «безработный», «грамотность» или «отмена налога». Оппозиционно настроенные ораторы и редакторы газет обсуждают точность этих определений. Слова летают взад и вперед — громкие, но пустые. Считается, что ученые стоят выше этого. Научные термины не допускают оппозиции: они четко определены и поддаются анализу, правда, часто их невозможно произнести. Ученые пытаются сформулировать определения с помощью математических символов и счастливы только тогда, когда термин хорошо вписывается в уравнение. Но даже в такой безупречной науке, как математика, желаемая точность не всегда достижима. Проклятый «фактор неопределенности» символизирует нежелание природы поддаваться классификации.

В биологии проблема определений стоит гораздо острее, чем в математике. Биологи крайне редко используют слово «доказательство» — оно требует слишком высокой точности. Вpачи не любят слово «исцеление». Кто знает? Гораздо удобнее сказать «ремиссия», поскольку это мало что означает: «сейчас болезнь отступила, насколько я понимаю, но, вернется ли она, сказать не могу». Природа ловко обходит придуманные нами определения. Как дать определение жизни? Наверное, важно подчеркнуть способность к воспроизведению и наличие метаболизма. А вирус — живой или нет? У него нет собственного метаболизма, так что он не попадает под стандартное определение. А если вы сумеете найти определение жизни, под которое вирус попадает, куда отнести прионы, которые представляют собой просто белки? Как дать определение старению? Неуклонное ослабление жизненных функций, ведущее к смерти? Описание это или определение? Если мы не можем дать определение жизни, как описать смерть? Если прион неживой, значит, он мертвый? Следовательно, его нельзя убить?

Я не собираюсь окунаться в море семантики. Конечно, всегда находятся решения, хотя простыми они бывают редко. Сейчас я хочу дать широкое определение «антиоксиданта». В главе 9 мы обсуждали, насколько это сложно. Все дело в точности определения: насколько точно мы можем определить столь скользкое понятие?

Первое определение понятия «антиоксидант» пришло из химии. Как и подобает науке, оперирующей символами, понятие антиоксиданта в химии имело строгий и однозначный смысл. Антиоксидант — это донор электронов, который предотвращает окисление вещества (или потерю им электронов). Слово это появилось в 1940-х гг. в пищевой промышленности. Жиросодержащие продукты, такие как сливочное масло, на воздухе становятся прогорклыми. Говоря техническим языком, они «переокисляются». Переокисление — это цепная реакция под действием свободных радикалов кислорода, таких как гидроксильный радикал, которые атакуют липиды в погоне за электронами. Они могут утащить электрон и сбежать или увязнуть в липиде, как игрок в регби, который завладел мячом, но не может выйти из схватки. Но в любом случае липид теряет электрон. Он становится свободным радикалом и сам атакует соседей, пытаясь отобрать у них электрон. Такая цепная реакция в липидах масла распространяется, как пожар. Антиоксидант останавливает процесс, «удаляя» свободные радикалы. Он отдает электрон и останавливает развитие цепной реакции. Поэтому в пищевые продукты традиционно добавляют такие антиоксиданты, как бутилгидроксианизол.

Приведенное выше точное определение годится для химии или пищевой промышленности, но не для биологии. В присутствии железа донор электронов может быть как антиоксидантом, так и прооксидантом. Все зависит от контекста. Поэтому в данной главе я предлагаю проанализировать контекст и не учитывать детали — оставить редукционистский подход и посмотреть, как работает синтез. Это позволит понять, как целые организмы — одноклеточные или многоклеточные — противостоят окислению. Мы будем проводить анализ не только на уровне химических реакций, но и на уровне морфологии и поведения.

Защититься от окислительного стресса можно пятью способами: спрятаться в укрытие, применить антиоксидантные ферменты, устранить свободные радикалы, осуществить репарацию и запустить индуцируемые стрессом peaкции. Некоторые организмы, особенно те, что прячутся от кислорода, пользуются лишь одним или двумя механизмами, тогда как другие, включая нас с вами, вынуждены применять все средства защиты. Мы — настоящие машины по производству антиоксидантов. Чтобы увидеть, как работает эта защита, мы обсудим принцип действия каждого механизма. Это далеко не исчерпывающий анализ — я выделю только некоторые аспекты влияния этих механизмов на наше с вами физическое и физиологическое устройство.


Самый простой способ защититься от токсичного кислорода — спрятаться от него. Малюсеньким бактериям укрыться легко. Некоторые строго анаэробные бактерии, которые погибают в присутствии даже следовых количеств кислорода, прячутся внутри других клеток. Пример крайней нетерпимости — метаногенные бактерии, которые живут в желудке крупного рогатого скота и овец. Как матрешки, они скрываются внутри симбиотических микробов, которые расщепляют целлюлозу из травы, а те, в свою очередь, прячутся в желудке животных.

Кишечник различных животных — от поедающих древесину термитов до слонов — весьма комфортабельное место, предоставляющее укрытие многим анаэробным микробам. У нас в кишечнике живут большие колонии так называемых комменсальных (симбиотических) бактерий, которые обычно безвредны или даже полезны, но иногда могут оказаться столь же зловредными, как издаваемый ими запах. Считается, что метаболическая емкость всей популяции кишечных бактерий равна метаболической емкости печени. Непереваренные органические вещества и бактерии впитывают кислород, так что в толстой кишке создаются почти аноксические условия с концентрацией кислорода ниже 0,1% атмосферного уровня. В таких условиях анаэробные бактерии, такие как Bacteroides, в сотни раз превосходят по численности своих аэробных родственников.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация