Книга Кислород. Молекула, изменившая мир, страница 79. Автор книги Ник Лэйн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кислород. Молекула, изменившая мир»

Cтраница 79

Гипотеза одноразовой сомы предполагает наличие компромисса между успешностью воспроизведения и поддержанием сохранности организма. Чтобы дольше жить, нужно больше ресурсов направлять на поддержание сохранности организма и меньше — на размножение. Это, по сути, жизненный выбор, перераспределение ресурсов организма, на которое теоретически может влиять сам человек. Напротив, гипотеза антагонистической плейотропии основана на компромиссе между действием генов в молодом и более позднем возрасте, связанном с большей активностью в молодости и постепенным угасанием в старости.

Возможно, в этом компромиссе задействованы сотни или даже тысячи генов. Вот в чем заключается принципиальное различие между двумя гипотезами. Если старение — результат накопления сотен или тысяч отсроченных негативных воздействий, мы вряд ли можем повлиять на этот процесс. Изменение максимальной продолжительности жизни в таком случае потребовало бы изменения всего генотипа с неизвестными последствиями для нашего здоровья в молодости. По этой причине гипотеза антагонистической плейотропии негативным образом сказалась на развитии исследований. В частности, из нее следует, что все плохое, что может случиться, обязательно случится. «Плохие» гены вызывают болезнь, так что в старости мы обязательно заболеем.

Так ли это на самом деле? Действительно ли невозможно умереть в старости здоровым? Большинство людей считают, что это возможно, хотя бывает редко. Самые старые долгожители, перешагнувшие столетний рубеж, часто умирают от мышечной слабости, а не от какого-то конкретного заболевания. Это означает, что есть разница между старением и старческими заболеваниями, вызванными «поздно действующими генами». Может быть, гипотеза одноразовой сомы описывает процесс старения в целом, а гипотеза антагонистической плейотропии на генетическом уровне объясняет нашу подверженность старческим заболеваниям? Может быть. Мы поговорим об этом в главе 14.


Возможно, старение все же управляемо в большей степени, чем следует из гипотезы антагонистической плейотропии, что подтверждается изменчивостью продолжительности жизни организмов в дикой природе. Если для изменения продолжительности жизни требуется координированная мутация сотен или тысяч генов с отсроченным характером действия, любые изменения должны происходить за очень протяженные промежутки времени. Но мы видели, что продолжительность жизни опоссумов удвоилась менее чем за 5000 лет — один миг по эволюционной шкале времени. Люди стали жить вдвое дольше других высших приматов за несколько миллионов лет, да и сами приматы достаточно быстро стали жить долго по стандартам других млекопитающих. В лаборатории можно добиться удвоения времени жизни дрозофил всего за 10 поколений. Быстрота этих изменений показывает, что продолжительность жизни можно модулировать путем воздействия всего на несколько генов.

Эта идея подкрепляется экспериментальными данными. Уже известно некоторое количество так называемых геронтогенов, под влиянием которых продолжительность жизни простых животных, таких как нематоды, может удвоиться или даже утроиться. На первый взгляд может показаться, что эти гены оказывают совершенно разное действие, но при ближайшем рассмотрении выясняется, что все они связаны между собой общим фактором — кислородом.


Впервые о мутациях, вызывающих увеличение продолжительности жизни, в 1988 г. сообщили Дэвид Фридман и Том Джонсон, тогда работавшие в Университете Калифорнии в Ирвине. Мутантный ген age-1 увеличивал максимальную продолжительность жизни крошечной нематоды Саеnоrhabditis elegans длиной всего 1 мм от 22 до 46 суток. Мутантные нематоды были нормальными во всех отношениях, за исключением того, что их плодовитость снижалась на 75%. В 1993 г. Синтия Кеньон и ее группа в Университете Калифорнии в Сан-Франциско обнаружили, что мутация родственного гена daf-2 почти втрое увеличивала продолжительность жизни С. elegans — до 60 суток, что эквивалентно человеческой жизни длиной в 300 лет. Выяснилось, что оба гена могли останавливать развитие С. elegans, превращая нематоду в долгоживущую и нечувствительную к стрессу форму, называемую спящей личинкой.

Теперь известно более 30 генов, участвующих в образовании спящей личинки [67]. Эта форма обычно появляется в экстремальных условиях, особенно при недостатке пищи и перенаселенности. Личинка переживает трудные времена в состоянии сна. Она запасает питательные вещества и не должна есть, а также окружает себя толстой пленкой, защищающей от внешних воздействий. Когда условия улучшаются, личинка «просыпается» и возвращается к той фазе жизни, в которой остановилось ее развитие. Время, проведенное в спящем состоянии, никак не влияет на продолжительность жизни взрослой формы. Если до погружения в сон нематоде оставалось прожить 10 дней, после пробуждения она проживет 10 дней. Можно сказать, что спящие личинки не стареют, хотя в реальности после 70 суток сна они редко оживают. У личинок есть два свойства, которые могли бы объяснить их долгожительство: пониженный метаболизм и повышенная устойчивость к стрессу. В частности, спящие личинки нечувствительны к окислительному стрессу, вызванному пероксидом водорода или высокой концентрацией кислорода.

Мутации генов, контролирующих образование спящих личинок, иногда нарушают формирование личинок даже в нормальных условиях. В других случаях нематоды оказываются неспособны перейти в спящее состояние в экстремальных условиях. Но самое удивительное и важное наблюдение заключается в том, что эффект долгожительства можно отделить от образования спящей формы. В определенных условиях мутации генов age-1 и daf-2 могут удвоить продолжительность жизни нормальной взрослой формы без погружения в фазу сна. Забавно, что одним из необходимых условий является нормальное функционирование третьего гена, называемого daf-16. Если daf-16 мутирован и не может нормально работать, мутации аgе-1 и daf-2 не приводят к увеличению продолжительности жизни. Дело в том, что age-1 и daf-2 снижают продолжительность жизни, ингибируя действие гена daf-16.

Каким бы ни был механизм этого процесса, ясно одно: все эти гены взаимодействуют между собой регулируемым образом в зависимости от ситуации. Как заметила Синтия Кеньон в статье в журнале Nature,


«Долгожительство спящей личинки объясняется регуляцией механизма увеличения продолжительности жизни, который можно отделить от других аспектов образования спящей формы; понять механизм удлинения жизни можно путем изучения генов daf-2 и daf-16».

Что же делают эти гены? Ответ на этот вопрос позволяет объяснить многие наблюдения, обсуждавшиеся в этой и предыдущей главе. В конце 1990-х гг. Хейди Тиссенбаум, Гэри Равкан и их группа в Гарварде последовательно осуществили клонирование генов аge-1, daf-2 и daf-16. Эти гены кодируют белки, контролирующие клеточный ответ на действие гормонов. Каждый ген отвечает за одно звено в сигнальной цепи, а цепь эта следующая. Гормон связывается с мембранным рецептором, кодируемым геном daf-2. Рецептор активирует связанный с ним фермент, кодируемый аge-1. Активированный рецептором фермент усиливает сигнал, катализируя производство большого количества вторичных посредников (мессенджеров) — как будто распространяет информацию. Вторичные мессенджеры поступают в ядро, где эта информация либо активирует, либо дезактивирует транскрипционные факторы (белки, которые связываются с ДНК и контролируют активность генов). Один из важнейших транскрипционных факторов кодируется геном daf-16. Связываясь с ДНК, этот транскрипционный фактор координирует клеточный ответ на гормональный сигнал, выбирая определенный набор генов для транскрипции.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация