Книга Кислород. Молекула, изменившая мир, страница 84. Автор книги Ник Лэйн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кислород. Молекула, изменившая мир»

Cтраница 84

Необходимость совместного действия СОД и каталазы связана со сложной структурой сети антиоксидантов; конечно же, СОД и каталаза работают не в одиночестве. Устойчивость к стрессу является результатом действия многофакторной системы, включающей в себя эффективный оборот белков и репарацию ДНК — наш второй фактор.

Важнейшую роль репарации ДНК в клетках человека можно проиллюстрировать на примере болезни, при которой эта система не работает. Синдром Вернера — редкое генетическое заболевание, в результате его люди очень быстро стареют. Рано седеют волосы, проявляются другие симптомы старения, включая катаракту, атрофию мышц, уменьшение костной массы, диабет, атеросклероз и рак. Больные обычно умирают в возрасте около 40 лет от сердечно-сосудистых заболеваний и рака. Изучая этот неизлечимый синдром, ученые надеялись больше узнать о процессе старения в целом и помочь всему человечеству. Но спектр симптомов заболевания не является полным отражением нормального старения, так что в конечном итоге ученые сочли синдром Вернера «карикатурой на старение». Однако в 1997 г. было сделано важное открытие — выделен ген, ответственный за развитие синдрома. Этот ген кодирует необычный бифункциональный фермент: одна активность фермента связана с раскручиванием спирали ДНК (геликазная активность), а другая — с вырезанием и заменой неправильных оснований ДНК (экзонуклеазная активность). Таким образом, фермент отвечает за исправление ошибок в ДНК, возникающих в процессе репликации и рекомбинации или в результате спонтанных мутаций, многие из которых возникают под действием свободных радикалов кислорода.

У большинства больных с синдромом Вернера обнаружена мутация геликазной части фермента, поэтому в их клетках невозможна нормальная репарация ДНК. Среди прочего, эта мутация повышает чувствительность клеток к ультрафиолетовому излучению, повреждающему ДНК. Это состояние кардинальным образом отличается от состояния устойчивости к стрессу, которое характеризуется способностью переносить более высокие дозы ультрафиолетового излучения. Таким образом, можно предположить, что ферменты репарации ДНК относятся к числу ферментов, синтез которых усиливается в долгоживущих мутантных организмах, таких как нематоды с мутантным геном daf-2. Хотя это не показано напрямую, мы знаем, что устойчивость к стрессу и долгожительство связаны с более эффективной системой репарации ДНК. Выращивая в культуре клетки животных с разной продолжительностью жизни и облучая их ультрафиолетовым светом или подвергая какому-то другому стрессовому воздействию (например, обработке пероксидом водорода), можно измерить эффективность репарации ДHK. Обычно такие исследования демонстрируют положительную корреляцию между максимальной продолжительностью жизни клеток и их способностью исправлять ошибки в ДНК.

Эти два примера подтверждают, что продолжительность жизни зависит от устойчивости к стрессу, которая (как минимум отчасти) связана с уровнем экспрессии индуцируемых стрессом белков, таких как СОД, каталаза, металлотионеин и ферменты репарации ДНК. На примере переключателя daf-16 показано, что в организме примитивных животных экспрессия этих генов регулируется. Влияние третьего фактора, заключающегося в ограничении калорийности питания, показывает, что даже в организме сложных животных реакция на стресс может регулироваться сравнительно простыми переключателями. Однако эти реакции могут отличаться от реакций в примитивных организмах.

Мы только начинаем понимать, какие механизмы связывают ограничение потребления калорий с продолжительностью жизни. Речь идет об общем количестве калорий, а не об употреблении каких-то определенных продуктов, таких как жиры или углеводы. Низкокалорийная диета подразумевает снижение потребления калорий на 30 — 40% при сохранении сбалансированного потребления разных продуктов. Таким образом, это не то же самое, что недостаточность питания или голод (под которыми обычно понимают снижение калорийности рациона питания на 50 или 60%).

Впервые о влиянии ограничения калорийности питания заговорили в 1930-х гг., и с самого начала эти результаты интерпретировали в рамках теории «скорости жизни»: если меньше есть, снижается скорость метаболизма и потребление кислорода. В таком ключе ограничение калорийности питания казалось делом бессмысленным, хотя продолжительность жизни практически всех животных возрастала на 30 или 50%. Кто захочет жить в полтора раза дольше, если за это нужно платить не только серьезным ограничением рациона питания, но и двукратным снижением уровня жизненной энергии? Даже самый ленивый человек, возможно, предпочтет быть энергичнее и умереть молодым. Но оказалось, что ограничение калорийности питания сказывается гораздо более интересным образом. Для начала, оно совсем не обязательно вызывает снижение скорости метаболизма. Скорость метаболизма, измеренная как потребление кислорода на килограмм мышечной массы, даже возрастает. Таким образом, ограничение калорийности питания может повышать энергетический потенциал продолжительности жизни — организм получает право на дополнительное число сердцебиений. В экспериментах с самцами крыс увеличение продолжительности жизни достигало 50%. Эффект ограничения калорийности питания опосредован согласованными изменениями экспрессии генов. И преимущества для организма весьма существенны. У всех изученных до сих пор животных ограничение калорийности питания замедляет старение, а не только отдаляет наступление смерти. Для грызунов это справедливо в отношении как минимум 80% из 300 симптомов старения, включая физическую активность, поведение, обучение, иммунные реакции, активность ферментов, экспрессию генов, гормональный статус, синтез белков и переносимость глюкозы.

Суммарный эффект ограничения калорийности питания заключается в повышении сопротивляемости стрессу. Снижается уровень глюкозы в крови, что приводит к уменьшению уровня инсулина. Метаболизм переключается от размножения на сохранение здоровья организма. Снижается чувствительность к окислительному стрессу, особенно в тканях с наиболее активным метаболизмом, таких как головной мозг, сердце и скелетные мышцы. Пока мы точно не знаем, как все это происходит. Еще ничего не известно о согласованных изменениях антиоксидантных ферментов. Можно предположить, что имеет место активация ряда генов, ответственных за устойчивость к стрессу, включая гены СОД, каталазы, металлотионеина и ферментов репарации ДНК, но это не совсем так [72]. Казалось бы, какая разница, если такое изменение образа жизни благотворно скажется на состоянии человека. Но выводы делать рано. Любые прямые испытания будут длиться несколько десятилетий.

В 1987 г. Национальный институт старения в Балтиморе (Мэриленд) и Центр по изучению приматов в Мэдисоне (Висконсин) начали два типа испытаний на приматах, в которых было задействовано 200 макак резус и беличьих обезьян. В 2001 г. группа ученых из Висконсина под руководством Ричарда Вейндруха опубликовала предварительный отчет о влиянии низкокалорийного питания на экспрессию генов в организме макак резус. Ученые определяли, какие из 7000 анализируемых генов были включены, а какие выключены у животных, находящихся на низкокалорийной диете, по сравнению с нормально питавшимися животными того же возраста. Выводы оказались неожиданными и интригующими. Как и ожидалось, устойчивость к стрессу в группе животных с ограничением калорийности питания возрастала, но никаких заметных различий в уровне синтеза индуцируемых стрессом белков в двух группах животных обнаружено не было. Однако ограничение калорийности питания приводило к трем выраженным эффектам. Во-первых, усиливалась внутренняя структура клеток: скорость синтеза практически всех структурных белков увеличивалась более чем вдвое. Во-вторых, ослабевал синтез белков, вызывающих воспаление, таких как фактор некроза опухолей (ФНО-α) и фермент NО-синтаза. В-третьих, замедлялся синтез белков дыхательной цепи, особенно цитохрома с (в 23 раза по отношению к норме!). Этот последний эффект соответствовал снижению скорости метаболизма: живи медленно — умрешь старым [73].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация