Книга Кислород. Молекула, изменившая мир, страница 93. Автор книги Ник Лэйн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кислород. Молекула, изменившая мир»

Cтраница 93

Проект «Геном человека» был реализован именно в таком ключе: гены могут работать плохо и вызывать болезнь. Следовательно, чтобы лечить больных, нужно найти «плохой» ген и заставить его работать хорошо. Сегодня это еще невозможно, но в скором времени мы, безусловно, будем пользоваться достижениями генной терапии. Требуется только заменить негодный ген хорошей новой копией — замените карбюратор, и машина заработает. Действительно, многие патологии, связанные с нарушением функции одного-единственного гена, например гемофилия или мышечная дистрофия, могут поддаваться такому лечению. Гемофилия вызвана мутацией гена фактора VIII, отвечающего за свертывание крови, так что этот белок не синтезируется. Его можно ввести больному с помощью переливания крови или встроить нормальный ген с помощью генной терапии. На этом пути существует множество практических сложностей, но в концептуальном плане все понятно: нужно обеспечить наличие правильного количества фактора VIII в правильное время.

Однако заболевания, вызванные повреждениями одного-единственного гена, встречаются сравнительно редко. Большинство заболеваний, особенно возрастных, связано с активностью множества генов. Очень часто вообще нет никакого генетического «дефекта». Эту ситуацию нельзя описать в черно-белом цвете — между работающим и неработающим геном есть множество оттенков серого. Смотрите сами: ген кодирует белок. Если в процессе эволюции происходит изменение последовательности гена, изменяется структура белка. Иногда новый белок вообще не работает, и в таком случае, если это важный белок, данный ген удаляется естественным отбором. Иногда изменение последовательности гена не влияет на функцию белка, он просто оказывается чуть-чуть другим [81]. Но могут возникать варианты белка, функциональные в большей или меньшей степени. В конкретных условиях какой-то вариант работает лучше остальных, но это не означает, что другие «дефектны». Измените условия, и альтернативная форма может стать более эффективной. Все согласны, что трактор не приспособлен для езды по городу, но отлично работает в сельской местности. Допустим, вы переезжаете в город и сохраняете свой трактор, поскольку на машину нет денег. Конечно, вам будет труднее передвигаться, чем раньше, но все же лучше, чем ходить пешком. Трактор-то работает.

Различные рабочие версии гена называют полиморфными аллелями. Их значение трудно переоценить — это молекулярная основа вариабельности и адаптации, сама суть индивидуальности. Генетическое различие между людьми заключается не в различии между генами, а в едва заметном различии версий одних и тех же генов. В среднем в нашей ДНК встречается от одной до десяти замен на тысячу нуклеотидов — это так называемый полиморфизм одиночных нуклеотидов (SNP (произносится «снип»), от singlе-nucleotide polymorphism)). Исследователи продолжают составлять базы данных SNP, но работа эта огромная: в геноме человека их содержится около миллиона. Рекомбинация и перетасовка SNP в результате полового размножения являются одной из причин нашего бесконечного генетического разнообразия. По той же причине эти последовательности влияют на нашу подверженность заболеваниям и реакцию на лечение.

В результате селективного давления в ходе эволюции некоторые полиморфные гены (определенные конфигурации SNP) начинают преобладать в популяции. Селективное давление может размывать границы между патологическим процессом и эволюционным равновесием. Наши гены в таком случае вынуждены наилучшим образом выполнять плохую работу. В предыдущих главах мы уже рассматривали примеры состояний, которые, по сути, не являются патологическими. Например, нечувствительность к инсулину при диабете является реакцией генов на тяжелые времена, и эта реакция подвергалась отбору на протяжении многих поколений. Патологией она становится тогда, когда людям с «бережливым» генотипом навязывают высококалорийную диету западного типа. Серповидно-клеточная анемия и талассемия защищают от малярии за счет небольших изменений в структуре гемоглобина. Распространенность этого вида анемии очень высока в эндемичных по малярии районах, поскольку носители соответствующего гена не страдают от анемии, но защищены от малярии. Пока мы не знаем, сколько других потенциальных заболеваний сохраняется в генетическом пуле человечества из-за того, что эти версии генов одновременно обеспечивают какие-то преимущества.

Вот такая любопытная ситуация: наши гены могут вызывать заболевания, хотя, по сути, они совершенно нормальны. Они просто вариабельны. Лечить больных с учетом генетического полиморфизма — это значит заявить, что все люди различны и к каждому требуется индивидуальный подход. Фактически именно это и заявляют лидеры ведущих фармацевтических компаний. Многие достойные люди, такие как сэр Ричард Сайкс, бывший руководитель корпорации GlaxoSmithKline, говорят нам о революции в медицине. Мы ошибаемся, если считаем, что существует такая вещь, как болезнь Альцгеймера: на самом деле, есть целый калейдоскоп обманчивых состояний, вызванных уникальными комбинациями полиморфных генов. Эти комбинации вызывают целый спектр заболеваний, которые на первый взгляд «выглядят» одинаково («похожи на болезнь Альцгеймера»), но в реальности совершенно различны и могут по-разному поддаваться лечению. Именно поэтому, как нам говорят, нам пока не удается продвинуться в лечении подобных заболеваний: конкретный тип лечения конкретного человека может одновременно приводить к желательным и к нежелательным ответам. Мы уже умеем искать гены, предрасполагающие к появлению тех или иных заболеваний, теперь нужно заняться анализом целых геномов. Когда нашей мишенью станет индивидуальный генотип, лечение будет еще более специализированным. Новые «бестселлеры» среди лекарств подведут нас к генной терапии, направленной на лечение конкретных людей.

В этом заключается идеология развивающегося направления фафмакогеномики, и горе тому, кто скажет, что оно никуда нас не ведет. А ведь это так. Отдельные гены или даже генотипы могут объяснять предрасположенность к распространенным возрастным заболеваниям, но в более широком плане это не так. Представьте себе, что вы переходите улицу. Теоретически вы можете оказаться под колесами автомобиля. Ваша жизнь зависит от вашего поведения: если вы выходите на оживленную дорогу, не остановившись и не оглядевшись, вы с гораздо большей вероятностью погибнете под колесами, чем если встанете у пешеходного перехода, ожидая остановки транспорта. Число смертей на дорогах можно уменьшить с помощью ограничения скорости, «лежачих полицейских», более совершенной дорожной разметки, подземных или надземных переходов, образовательных бесед с населением и штрафов за вождение в нетрезвом виде. Если бы все эти маленькие изменения контролировались генами, воздействие на каждый ген способствовало бы небольшому, но положительному влиянию на количество дорожных происшествий. Но значительного снижения смертности можно достичь только путем влияния на все «гены» одновременно, и даже при этом наверняка какое-то количество людей будет гибнуть в авариях. Единственный способ полностью предотвратить дорожные аварии заключается в полном запрещении автомобилей. Аналогичным образом, мы можем разыскивать гены, ответственные за предрасположенность к заболеваниям, и, влияя на них, в какой-то степени снижать профиль риска, но единственный способ полностью предотвратить старческие заболевания заключается в предотвращении старения. Является ли эта идея столь же нелепой, как запрещение автотранспорта, или мы можем продвинуться в этом направлении?

Вход
Поиск по сайту
Ищем:
Календарь
Навигация