Однако мы забегаем вперед. До образования реликтового излучения пройдет еще множество эонов. Мы преодолели лишь 10-34 секунды, и нам еще о многом нужно поговорить.
К моменту окончания стадии инфляции молодая Вселенная стала намного более холодной и пустой по сравнению с моментом своего зарождения. Процесс, называемый «вторичным нагревом», привел к повсеместному повышению температуры, чем вызвал дальнейшее постепенное расширение и охлаждение.
Эпоха кварков
Если до инфляции космос, скорее всего, можно было бы описать Теорией великого объединения, то после ее окончания он начал приближаться к состоянию, отвечающему современным законам физики. Впрочем, до этого еще далеко. На данной стадии сильное ядерное взаимодействие уже покинуло вечеринку ТВО, а электромагнетизм и слабое ядерное взаимодействие по-прежнему оставались объединенными в некое «электрослабое» взаимодействие. Однако в первичном бульоне
[24] уже начали формироваться частицы, а именно, кварки и глюоны.
В наши дни кварки чаще всего встречаются в виде компонентов протонов и нейтронов (которые вместе называются адронами). Глюоны представляют собой своеобразный «клей», который связывает кварки посредством сильного ядерного взаимодействия. Глюоны настолько хорошо справляются со своей задачей, что, несмотря на распространенность систем, включающих два, три, а иногда четыре и пять кварков, обнаружить отдельный кварк до сих пор никому не удавалось. Оказывается, если у вас есть два кварка, связанных вместе в экзотической частице, называемой мезоном, вам придется потратить на их разделение столько энергии, что, прежде чем вы сможете добиться своего, энергия, которую вы затратили, спонтанно породит еще два кварка. Поздравляю! Теперь у вас два мезона.
Однако в ранней Вселенной действовали иные правила. Мало того, что силы природы подчинялись другим законам, саму Вселенную заполняла другая смесь частиц, а температуры были настолько высокими, что кварки не могли существовать в стабильном связанном состоянии. Кварки и глюоны свободно отскакивали друг от друга в кипящей смеси, называемой кварк-глюонной плазмой, которая представляет собой своего рода ядерный аналог пламени.
Эпоха кварков продолжалась до тех пор, пока Вселенная не достигла зрелого возраста в одну микросекунду. Незадолго до этого (вероятно, около отметки в 0,1 наносекунды) электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие. Примерно в это же время произошло нечто, позволившее отделить материю от антиматерии (ее злобного близнеца), в результате чего большая часть содержащейся во Вселенной антиматерии аннигилировала
[25]. Как и почему такое произошло, до сих пор остается загадкой, однако нам следует этому радоваться, поскольку в противном случае мы рисковали бы столкнуться с античастицами и исчезнуть во вспышке гамма-лучей.
Об эпохе кварков и о кварк-глюонной плазме мы знаем гораздо больше, чем об эпохе Великого объединения. Соответствующая теория довольно хорошо разработана и не так сильно отклоняется от стандартной физики элементарных частиц, как ТВО, а эксперименты подтверждают прогнозы, основанные на теории электрослабых взаимодействий. Однако настоящий прорыв состоит в том, что мы способны воссоздать кварк-глюонную плазму в лаборатории. Такие ускорители частиц, как Релятивистский коллайдер тяжелых ионов (RHIC, The Relativistic Heavy Ion Collider) и Большой адронный коллайдер (БАК, или LHC, Large Hadron Collider), сталкивая между собой ядра золота или свинца на чрезвычайно высоких скоростях, способны создавать крошечные огненные шары, настолько горячие и плотные, что они сдавливают все частицы и на мгновение заполняют коллайдер кварк-глюонной плазмой. Наблюдая, как после столкновений обломки «замерзают», превращаясь в обычные адроны, ученые могут изучить свойства этой экзотической материи, а также действие законов физики в таких экстремальных условиях.
Если исследование реликтового излучения позволяет нам увидеть Большой взрыв, то ускорители частиц дают нам попробовать на вкус первичный бульон
[26].
Первичный нуклеосинтез
После окончания фазы кварк-глюонной плазмы температура Вселенной понизилась достаточно для того, чтобы в ней начали образовываться некоторые из знакомых нам частиц. Спустя примерно одну десятую долю миллисекунды после возникновения Вселенной в ней сформировались первые строительные блоки обычной материи – протоны и нейтроны, за которыми вскоре последовали электроны. Где-то около двухминутной отметки Вселенная охладилась до комфортной температуры в миллиард градусов Цельсия, что гораздо горячее, чем центр Солнца, но достаточно прохладно для того, чтобы сильное ядерное взаимодействие могло объединить друг с другом только что возникшие протоны и нейтроны. Из них образовалось первое атомное ядро – форма водорода, называемая дейтерием (один протон, связанный с одним нейтроном; технически один протон также может считаться ядром, поскольку он является центром атома водорода). Вскоре такие ядра уже формировались повсюду. Некоторые протоны и нейтроны начали объединяться, образуя ядра гелия, трития, а также лития и бериллия. Этот процесс, называемый первичным нуклеосинтезом, продолжался около получаса до тех пор, пока Вселенная не остыла и не расширилась настолько, что частицы могли удаляться друг от друга на достаточное расстояние и уже не сливаться.
Одним из лучших подтверждений теории Большого взрыва является факт обнаружения тесной связи между нашими наблюдениями за космосом и расчетным количеством элементов, которое мы ожидаем, основываясь на оценках температуры и плотности первичного огненного шара. Это соответствие не совершенное – существует некоторая путаница, связанная с количеством лития, которая может свидетельствовать о какой-то неизвестной пока странности, свойственной ранней Вселенной. Что же касается водорода, дейтерия и гелия, фактическое их количество прекрасно согласуется с тем, которое мы ожидали бы обнаружить, если бы на ранних этапах своего развития весь космос представлял собой одну большую ядерную топку.
Кроме того, факт, что почти весь водород во Вселенной образовался в первые несколько минут после ее возникновения, говорит о том, что большая часть составляющего наш организм вещества в той или иной форме существовала во Вселенной практически на протяжении всей ее истории. Возможно, вы уже слышали, что «мы состоим из звездной пыли» (или «звездного вещества», как выразился Карл Саган), и это абсолютно верно, если судить по массе. Все наиболее тяжелые элементы в нашем теле – кислород, углерод, азот, кальций и т. д. – сформировались позднее, либо в недрах звезд, либо в результате их взрывов. Что касается количества, то самым распространенным элементом в нашем организме является водород (наиболее легкий элемент). Таким образом, мы действительно отчасти состоим из пыли древних поколений звезд. Однако мы также в значительной степени состоим из побочных продуктов Большого взрыва. Так что утверждение Карла Сагана остается в силе: «Мы – способ, которым Космос познает себя».