Обучение без учителя – один из наиболее многообещающих путей развития ИИ. Только представьте системы, умеющие обучаться сами без подготовки данных. Но их разработка – одна из самых сложных задач. Ее решение станет важной точкой на пути к созданию сильного ИИ.
Термин сильный ИИ обозначает истинно мыслящую машину, изначальную цель создания ИИ. Еще его называют интеллектом, сравнимым с человеческим разумом. Примеры сильного ИИ можно наблюдать в научной фантастике: компьютер HAL 9000 из «Космической одиссеи», главный компьютер космического корабля «Энтерпрайз» (или Дэйта) из «Звездного пути», андроид C3PO из «Звездных войн» и агент Смит из «Матрицы». Все эти вымышленные системы могли пройти тест Тьюринга (Turing test), то есть вести беседу как человек. Этот тест был предложен Аланом Тьюрингом в статье 1950 г. «Вычислительные машины и разум», которую можно считать основополагающей работой в области ИИ.
Есть вероятность, что когда-нибудь появится cуперинтеллект (superintelligence), или машина, превосходящая интеллектуальные способности любого человека. Это может произойти в результате простого увеличения аппаратных мощностей и быть ускорено самосовершенствованием этой машины. Так она запустит «рекурсивный цикл улучшения» или «быстрый интеллектуальный взлет», создавая проблему «выравнивания», если вступит в противоречие с интересам человека.
Иошуа Бенджио
“ИИ, который существует сейчас и может появиться в обозримом будущем, не понимает и не чувствует нормы морали".
Директор Монреальского института алгоритмов обучения (MILA), доктор computer science, профессор кафедры информатики и математических методов Монреальского университета, соруководитель проекта Learning in Machines & Brains Канадского института перспективных исследований (CIFAR)
Иошуа Бенджио широко известен как один из пионеров глубокого обучения. Он активно продвигал исследования нейронных сетей, в частности обучение без учителя, и стал соавтором книги «Глубокое обучение» – одним из основных учебников по одноименному предмету.
Мартин Форд: Вы играете ведущую роль в исследованиях ИИ, поэтому начать мне хотелось бы с вопроса о том, какие исследовательские проблемы стоят на пути к сильному ИИ.
Иошуа Бенджио: До создания ИИ, сравнимого с человеческим, нам еще очень далеко. Нужно понять, к примеру, почему невозможно создать машину, которая понимала бы окружающую действительность так же, как человек. Чего нам не хватает: обучающих данных или вычислительных мощностей? Многие считают, что причина состоит в отсутствии необходимых базовых компонентов, например, умения видеть причинно-следственные связи в данных, которое позволяет делать обобщения и находить правильные ответы в условиях, отличных от тренировочных.
Человек может представить, как он переживет новый для себя опыт. Например, если вы никогда не попадали в автомобильную аварию, вы все равно сможете прокрутить у себя в голове такую ситуацию и принять правильное решение. Обучение с учителем помогает компьютеру находить статистические закономерности в поставляемых данных, которые заранее классифицированы и размечены людьми.
Многие исследования пока не дали значимых результатов. Компьютер не может автономно приобретать знания о мире, воздействовать на него и наблюдать результат воздействия. Ответы на вопрос, как это реализовать, ищем не только мы.
М. Ф.: Какие проекты в настоящее время можно считать первостепенными в области глубокого обучения? Мне первым делом вспоминается программа AlphaZero. Есть ли другие?
И. Б.: На мой взгляд, из множества интересных проектов наиболее перспективны те, в которых агент в виртуальном мире пытается решать задачи, попутно изучая все с ними связанное. Такими проектами занимаемся мы в MILA, а также компании DeepMind, OpenAI, Университет Беркли, Facebook и Google в рамках проекта Google Brain. Это новые горизонты.
Но это долговременные исследования. Мы работаем не над конкретными вариантами применения глубокого обучения, а над тем, как научить агента осмысливать окружающую среду, говорить и понимать так называемый обоснованный язык (grounded language).
М. Ф.: Что означает этот термин?
И. Б.: Раньше компьютеры обучались языку, знакомясь с множеством текстов. Причем они достигали понимания только через связь слова с называемой им реалией. В отличие от робота, человек может сопоставить слово не только с объектом из реального мира, но и с вариантами изображения этого объекта.
Многочисленные исследования в области обучения обоснованному языку сводятся к попыткам научить роботов понимать язык хотя бы на уровне отдельных слов и выражений и реагировать соответствующим образом. Это очень интересное направление, необходимое для реализации таких вещей, как диалог с роботами, личные помощники и т. п.
М. Ф.: То есть, по сути, идея состоит в том, чтобы дать агенту свободу в смоделированной среде, позволив ему учиться, как это делают дети?
И. Б.: Именно так. Более того, мы пользуемся результатами исследований в области детского развития и изучаем, какие этапы проходит новорожденный в первые месяцы жизни, постепенно приобретая представления о мире. До сих пор не совсем понятно, какие умения являются врожденными, а какие получены путем изучения.
Несколько лет назад я предложил для машинного обучения практику, которая используется при дрессировке животных – обучение по плану (curriculum learning). Обучающие примеры в этом случае демонстрируются не произвольно, а в последовательности, целесообразной для обучения. Процесс начинается с простых концепций, которые после их освоения учеником можно использовать как «кирпичики» для объяснения более сложных понятий.
М. Ф.: Я бы хотел поговорить о работе над сильным ИИ. Очевидно, что важной составляющей этого процесса вы считаете обучение без учителя. Что еще необходимо сделать?
И. Б.: Мой друг Ян Лекун сравнивает этот процесс с подъемом на гору. Сначала все радуются, насколько высоко забрались, но по мере приближения к вершине встречается множество других гор. Сейчас при разработке сильного ИИ четко видна ограниченность используемых подходов. Пока мы искали способы обучения более глубоких сетей, взбираясь на первую гору, создаваемые системы исследовались очень узко – на том этапе было важно просто подняться на несколько шагов вверх.
Как только применяемые техники обучения дали первые удовлетворительные результаты – мы приблизились к вершине первой горы, – стали заметны ограничения. И это следующая гора, которую нужно будет покорять. Поэтому невозможно сказать, сколько еще открытий потребуется.
М. Ф.: А вы можете хотя бы примерно оценить количество гор? Или период времени, который потребуется на создание сильного ИИ? Просто поделитесь своими прогнозами.