Книга Всё ещё неизвестная Вселенная, страница 3. Автор книги Стивен Вайнберг

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Всё ещё неизвестная Вселенная»

Cтраница 3

Существовала и еще одна причина, по которой практическая польза астрономии была важна для развития науки: благодаря ей научные исследования получали государственную поддержку. Первым отличным примером был Александрийский мусейон, основанный греческими царями Египта на заре эпохи эллинизма около 300 лет до н. э. Он не был музеем в современном смысле, то есть местом, куда можно прийти, чтобы поглазеть на древности и картины. Александрийский музей был исследовательским учреждением, посвященным музам, в том числе музе астрономии Урании. Цари Египта поддерживали исследовательские работы по созданию катапульт и других артиллерийских орудий, а также летающих снарядов, проводившиеся в Александрии, предположительно в Музее, но вместе с тем Музей финансировал работу Аристарха Самосского, определившего размеры Солнца и Луны и расстояния до них, и работу Эратосфена Киренского, измерившего длину большой окружности поверхности Земли. Музей стал первым в ряду исследовательских центров с государственной поддержкой, среди которых можно назвать Дом мудрости, основанный примерно в 830 г. халифом ал-Мамуном в Багдаде, и обсерваторию Тихо Браге Ураниборг на острове, пожалованном ученому датским королем Фредериком II в 1576 г. Традиция государственной поддержки научных исследований продолжается и в наши дни. Например, лаборатория ядерных исследований CERN и Фермилаб или космические телескопы, такие как Hubble, WMAP и Planck, запущенные в космос NASA и Европейским космическим агентством.

Фактически в прошлом астрономия выигрывала от того, что ее польза была слишком высоко оценена. Наследие вавилонской и эллинистической эпох — это не только серьезный корпус точных астрономических наблюдений (и еще, наверное, гномон), но и псевдонаука астрология. Птолемей был автором не только великого научного трактата «Альмагест», но еще и книги по астрологии «Тетрабиблос». В Средние века и в начале Нового времени поддержка работ по составлению астрономических таблиц царями во многом определялась тем, что эти таблицы использовались астрологами. Кажется, это противоречит тому, что я сказал о важности правильного применения научного знания, однако астрологи в основном использовали астрономию корректно, по крайней мере в том, что касается видимого движения планет и звезд, и они могли оправдывать неудачи в описании человеческих отношений туманностью формулировок своих предсказаний.

Практическая сторона астрономии увлекала не всех. В диалоге Платона «Государство» обсуждается среди прочего образование, которое должны получать будущие цари-философы. Сократ полагает, что астрономия обязательно должна изучаться, а его собеседник Главкон поспешно соглашается, поскольку «внимательные наблюдения за сменой времен года, месяцев и лет пригодны не только для земледелия и мореплавания, но не меньше и для руководства военными действиями» [7]. Бедный Главкон Сократ называет его наивным и объясняет, что настоящая причина для изучения астрономии состоит в том, что эта наука заставляет разум взирать ввысь и размышлять о вещах более величественных, чем наш будничный мир.

Основная область моих собственных исследований — физика элементарных частиц — не имеет прямого практического применения [8], понятного всем (хотя сюрпризы всегда возможны), поэтому лично для меня невелика радость говорить о важности прикладного аспекта в историческом развитии науки. Сегодня в фундаментальной науке, вроде физики частиц, выработаны стандарты верификации, которые делают практическое применение необязательным для проверки нашей правоты (ну, или нам так кажется), и ученые работают без оглядки на практическое применение, только ради интеллектуального удовлетворения. Однако фундаментальным исследованиям по-прежнему приходится конкурировать за государственную поддержку с прикладными науками, такими как химия и биология, практическая польза которых очевидна.

К сожалению, аргументы в борьбе за поддержку астрономии, построенные на тех ее практических применениях, о которых я говорил выше, совершенно устарели. Теперь для отсчета времени мы используем атомные часы, настолько точные, что мы можем измерить малейшие изменения в длительности суток и года. Текущую дату мы узнаем, взглянув на наручные часы или экран компьютера. А недавно звезды потеряли свою значимость и для навигации.

В 2005 г., путешествуя на борту парусного лайнера Sea Cloud, совершавшего круиз по Эгейскому морю, как-то вечером я обсуждал с капитаном корабля вопросы навигации. Он показал мне, как пользоваться секстантом и хронометром для определения координат в море. Измеряя секстантом угол между горизонтом и положением определенной звезды в известный, благодаря хронометру, момент времени, можно определить, что ваше судно должно находиться где-то на заданной кривой на карте Земли. Проведя измерение с другой звездой, можно получить еще одну кривую, точка пересечения которой с первой кривой и укажет ваше местоположение. Если повторить процедуру c третьей звездой, можно проверить, не совершили ли вы ошибку: третья кривая должна пересечь первые две в той же точке. Продемонстрировав все это, мой друг капитан посетовал, что молодые офицеры торгового флота уже не умеют определять свое местоположение с помощью хронометра и секстанта. Из-за появления спутниковых систем глобального позиционирования навигация по звездам стала ненужной.

У астрономии осталось одно полезное назначение: она сохранила ключевую роль в нашем познании законов природы. Как я упоминал, именно задача о движении планет привела Ньютона к открытию законов движения и закона всемирного тяготения. Тот факт, что атомы поглощают и излучают свет только определенных длин волн, был обнаружен в начале XIX в. в результате изучения спектра Солнца, а впоследствии, уже в XX в., это открытие привело к развитию квантовой механики. Кроме того, в XIX в. эти наблюдения за Солнцем позволили открыть новые, прежде неизвестные, химические элементы, например гелий. В начале XX в. общая теория относительности Эйнштейна (ОТО) была проверена на астрономических объектах — сначала на основе сравнения теоретических расчетов с наблюдаемым движением планеты Меркурий, а затем благодаря успешному предсказанию отклонения света звезд гравитационным полем Солнца.

После экспериментального подтверждения ОТО источник данных, обеспечивающий прогресс фундаментальной физики, на некоторое время сместился из области астрономии сначала в область атомной физики, а затем, в 1930-х гг., в область ядерной физики и физики элементарных частиц. Однако прогресс в физике частиц замедлился после создания в 1960–1970-х гг. Стандартной модели элементарных частиц, которая обобщала все имеющиеся на тот момент данные об их поведении. Единственное открытие, сделанное за последние годы в этой области, которое выходит за рамки Стандартной модели, — определение мизерных масс различных типов нейтрино, и это открытие имеет некоторое отношение к астрономии, поскольку исследовались нейтрино, испускаемые Солнцем.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация