Книга Восемь этюдов о бесконечности. Математическое приключение, страница 45. Автор книги Хаим Шапира

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Восемь этюдов о бесконечности. Математическое приключение»

Cтраница 45

Хотите – верьте, хотите – нет!

Наши бледные рассуждения скрывают от нас бесконечное.

Джим Моррисон, The Doors
Каникулы алгебраических чисел в отеле Гильберта

Наша экспедиция в гостиницу Гильберта показала, что не всякое множество может в ней разместиться, хотя гостиница и бесконечна. Количество элементов множества всех чисел, заключенных между 0 и 1, оказалось слишком большим, чтобы все они смогли поселиться в гостинице.

Множество этих чисел несчетно-бесконечно, так как между ним и множеством натуральных чисел нет одно-однозначного и сюръективного соответствия. Существуют ли другие множества чисел, бесконечные, но несчетные, то есть такие множества, которые невозможно разместить в бесконечной гостинице?

Интересный пример множества этого типа дает множество неалгебраических чисел, которые мы сейчас определим. Но сначала проясним, что такое алгебраическое число.

Вспомним, что рациональное число – это число q, которое может быть записано в виде отношения двух целых чисел


Восемь этюдов о бесконечности. Математическое приключение

Можно дать другое, эквивалентное определение: число q – рациональное число тогда, и только тогда, когда оно является решением уравнения «первой степени», а именно уравнения вида


Восемь этюдов о бесконечности. Математическое приключение

где коэффициенты a и b – целые числа.

Ясно, что любое рациональное число


Восемь этюдов о бесконечности. Математическое приключение

удовлетворяет равенству


Восемь этюдов о бесконечности. Математическое приключение

и, следовательно, является решением уравнения первой степени


Восемь этюдов о бесконечности. Математическое приключение

Например, число


Восемь этюдов о бесконечности. Математическое приключение

является решением уравнения


Восемь этюдов о бесконечности. Математическое приключение

Что же такое тогда алгебраическое число?

ОПРЕДЕЛЕНИЕ АЛГЕБРАИЧЕСКОГО ЧИСЛА

Число считается алгебраическим, если оно является корнем (то есть решением) уравнения вида:

Восемь этюдов о бесконечности. Математическое приключение

,

где все коэффициенты ak – целые числа.

Число, не являющееся алгебраическим, называют «трансцендентным числом».

Левая часть приведенного выше уравнения называется многочленом (или полиномом) n-й степени, если n не равно 0.

Из этого определения немедленно следует, что все рациональные числа относятся к числам алгебраическим. Однако есть и иррациональные алгебраические числа {30}. Вот несколько примеров:

√2 – алгебраическое число, так как является решением уравнения x² − 2 = 0.

Кубический корень из


Восемь этюдов о бесконечности. Математическое приключение

– алгебраическое число, так как является решением уравнения


Восемь этюдов о бесконечности. Математическое приключение
Восемь этюдов о бесконечности. Математическое приключение

– алгебраическое число (но не вещественное число), так как является решением уравнения x² + 1 = 0.

Золотое сечение ϕ – алгебраическое число, так как является решением уравнения x² − x − 1 = 0.

Короче говоря, алгебраические числа «многочисленны», потому что «многочисленны» уравнения с многочленами вида


Восемь этюдов о бесконечности. Математическое приключение

С учетом этого следующее утверждение может показаться несколько удивительным:

ТЕОРЕМА

Множество алгебраических чисел счетно.

Доказательство. Рассмотрим уравнение


Восемь этюдов о бесконечности. Математическое приключение

Предположим, что an – положительное число. Если это не так, мы можем умножить все уравнение на (–1); получившееся уравнение будет иметь те же корни.

Подобно тому, как мы разбирались с расселением рациональных чисел в гостинице, определим для каждого многочлена «высоту» Н.


Восемь этюдов о бесконечности. Математическое приключение

Символ |m| обозначает абсолютное значение (или модуль) числа. Если число положительно, его абсолютное значение равно ему самому: | 37 | = 37. Если число отрицательно, абсолютное значение становится положительным: |–234 | = 234.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация