Этот временной интервал — 635–541 млн лет — называется эдиакарским периодом. Правда, в литературе встречается и другое название — венд. Вендскую систему в 1952 г. установил советский геолог и палеонтолог Борис Сергеевич Соколов на Восточно-Европейской платформе (континент Балтия). (Система — это отложения, накопившиеся за соответствующий период, точнее, период — это время накопления отложений определенной системы.) Ее типовые геологические разрезы находятся в бассейне реки Днестр, на границе Молдавии и Украины. А названа она по имени вендов, или венетов, так латинские авторы, начиная с Тацита (II в. н. э.), именовали народы, населявшие южное побережье Вендского залива (Балтийское море); когда здесь появились славяне, имя приросло и к ним. (Традиция давать системам/периодам хроностратиграфической шкалы имена древних народов и племен, населявших территории, где расположены ключевые разрезы, восходит к XIX в., когда были выделены ордовикский, силурийский и пермский периоды.)
Название «эдиакарская система» появилось позже: в 1960 г. его впервые упомянули французские геологи Анри и Женевьева Термье, а в 1981–1982 гг. предложили утвердить официально палеонтологи Мартин Глесснер, Ричард Дженкинс и Престон Клауд из Австралии и США. В 2004 г. это название было закреплено в Международной хроностратиграфической шкале за верхним подразделением протерозойской эонотемы. Типовые разрезы системы находятся на Эдиакарских холмах в горах Флиндерс в Южной Австралии, а за ее основание, нижнюю границу, принята кровля венчающего доломита маринойского оледенения. И это самый древний на сегодняшний день период, который имеет конкретное выражение в осадочных отложениях с определенным набором ископаемых остатков: все прочие подразделения архейского и протерозойского эонов именуются по основным событиям в геологической истории Земли, случившимся в те временные отрезки, а их границы имеют только радиометрическое выражение.
Главным отличием эдиакарской системы от других подразделений протерозойской эонотемы является обилие ископаемых организмов: разнообразные акритархи и другие водоросли, фосфатизированные эмбрионы Доушаньтуо, древнейшие ископаемые следы животных, первые скелетные остатки и, конечно, эдиакарская «мягкотелая фауна», или вендобионты (Vendobionta). Именно эволюция последних предопределила начало и конец особого периода в летописи Земли, а драматичная история их открытия — установление эдиакарской системы. Впервые отпечаток подобного организма, получивший имя аспиделла (Aspidella), был найден еще в 1872 г. на Восточном Ньюфаундленде геологом Элканахом Биллингсом, пионером исследований кембрийских и более древних отложений в Северной Америке. Аспиделле, как и многим другим эдиакарским ископаемым, описанным до середины прошлого века, была уготована незавидная судьба: их не признавали за органические остатки (как случилось и с самой аспиделлой), а если признавали, то считали вмещающие отложения кембрийскими или даже более поздними. Такая участь постигла и знаменитую фауну Эдиакарских холмов, открытую в 1940-е гг. австралийским геологом Реджиналдом Сприггом, и суворовеллу (Suvorovella) — одно из самых необычных ископаемых среди всей странной докембрийской фауны, обнаруженное в 1960 г. на якутской реке Мае, и фосфатизированные многоклеточные микроостатки из Северной Монголии.
Лишь с установлением эдиакарской системы стало ясно, что подобные организмы населяли моря и океаны, прежде чем появились более понятные кембрийские скелетные животные.
Глава 13. Задержка в развитии
Хотя эукариоты возникли в середине палеопротерозойской эры (2,1–1,8 млрд лет назад) и в течение мезо-неопротерозойского интервала постепенно становились разнообразнее и обильнее, их остатки встречаются не так уж часто. А вот осадочные слои эдиакарского периода буквально переполнены ископаемыми. Получается, что на протяжении миллиарда лет что-то тормозило темпы эволюции.
Американский геохимик Роджер Бюик, в 1995 г. изучавший мезопротерозойские отложения на северо-западе Австралии, даже охарактеризовал данный интервал словами Уинстона Черчилля, перефразируя историческое выражение премьер-министра Великобритании: «Никогда еще в истории Земли не случалось так мало за так много времени». А в научную литературу временной отрезок от 1,85 до 0,85 млрд лет вошел как «скучный миллиард».
Замерло накопление фосфоритов и гипсов, не образовывались шунгиты и другие богатые органическим веществом породы, даже оледенения прекратились (гуронская гляциоэра закончилась 2,24 млрд лет назад, а криогеновая началась лишь полтора миллиарда лет спустя). За время «скучного миллиарда» разнообразие акритарх — самой распространенной группы эукариот — оставалось практически неизменным, как и сами акритархи (одни и те же формы существовали от 0,4 до 1,1 млрд лет каждая), а темпы захоронения органического вещества были настолько низкими, что даже кривая соотношения углеродных изотопов превратилась в прямую, словно кардиограмма покойника (рис. 4.1е, м). Особенно это выпрямление бросается в глаза на фоне резких изотопных пиков Ломагунди-Ятулий (2,32–2,06 млрд лет назад), доходивших до +13‰ — предельного значения этого показателя за всю историю Земли (рис. 4.1е). Вполне возможно, что именно заторможенную эволюцию эукариот и невысокую их продуктивность мы и наблюдаем в виде спрямленной изотопной кривой.
Само по себе событие Ломагунди-Ятулий, отразившее в изотопной летописи захоронение значительных объемов неокисленного органического вещества, должно было предопределить дальнейший рост содержания кислорода в атмосфере, раз уж этот окислитель оставался невостребованным. Если предположить, что уровень этого газа, начиная с Великого кислородного события, постоянно повышался, как многие предполагали несколько лет назад (да и сейчас тоже), почему эволюция эукариот не спешила?
Современные геохимические и седиментологические исследования протерозойских отложений выявили, что темпы обогащения атмосферы кислородом были сильно преувеличены. Возьмем для примера два геохимических индикатора — уран и йод (а можно взять молибден, ванадий, рений, хром) — элементы, являющиеся показателями окислительно-восстановительной обстановки, время пребывания которых в океане на порядок превышает время перемешивания водных масс. В кислородной атмосфере уран в форме U6+ выносится с суши и растворяется в бескислородных глубинах, а накопление этого элемента, восстановленного до U4+ в виде уранинита (UO2), прямо зависит от уровня его концентрации в водной толще. Йод в форме йодата (IO3—) растворим только в водах, насыщенных кислородом, и лишь в этой форме улавливается карбонатами кальция; при понижении содержания кислорода IO3—ион восстанавливается (микробами или фотохимическим путем) до иодида (I—), который с карбонатами не взаимодействует. Поэтому соотношение I/(Ca+Mg) можно использовать для установления окислительно-восстановительных условий на мелководье, тогда как данные по урану позволяют понять, что происходило в глубинах океана.
А теперь посмотрим, как вели себя индикаторы окислительно-восстановительного состояния среды на протяжении протерозойского эона. Оба элемента, уран и йод, образуют заметные концентрации в слоях Ломагунди-Ятулий (к этому же интервалу приурочены и крупнейшие месторождения урановых руд), но, можно сказать, сходят на нет, т. е. к фоновым показателям в земной коре, в отложениях «скучного миллиарда». Лишь с началом криогеновых оледенений их концентрация вновь начинает расти. Графики возрастного распределения в осадках U и I/(Ca+Mg) поэтому выглядят как двугорбые удавы: один горб приходится на Великое кислородное событие (2,32–2,06 млрд лет), другой — на неопротерозойский рост уровня кислорода (0,635–0,570 млрд лет). Между горбами — почти прямая (рис. 4.1в — д). Миллиард лет бескислородного океана.