Осталось только объяснить, как в течение 8 млн лет поддерживались столь отрицательные соотношения изотопов углерода. Ведь для этого должно было накопиться столько органического вещества, что на его окисление потребовалось бы в несколько раз больше кислорода, чем его содержится во всей современной атмосфере и гидросфере, вместе взятых. А речь ведь идет о почти бескислородных временах. Однако шурамская аномалия сопровождается и заметным отрицательным сдвигом в изотопной подписи серы, причем как в сульфатах, так и в сульфидах. Значит, дело не в объемах захороненного органического вещества, а в тщательности фракционирования изотопов серы и углерода: без сульфатвосстанавливающих микробов в появлении этого феномена не обошлось, причем только в том случае, если им старательно помогли метанобразующие археи и метанокисляющие бактерии. Если эти прокариотные сообщества были изолированы в глубинах океана, а так, учитывая его трехэтажное строение, и было, то совместными усилиями они и смогли добиться столь невероятно отрицательных показателей.
Есть и еще более внушительные свидетельства своеобразия протерозойского морского осадконакопления — целые горные массивы.
Глава 14. Доломитовые Альпы
Многие минералы названы в честь регионов, где были открыты или получили распространение (мусковит — от Московии, где эту слюду вставляли в окошки; антарктицит — от Антарктиды; висмутин — от рудника Визенматт в Германии, и от него же произошло название металла висмут). Однако Доломитовые Альпы — горы на северо-востоке Италии — сами получили имя по наиболее обычному в этом и других альпийских горных массивах минералу — доломиту [CaMg(CO3)2].
Доломит часто встречается не только в Альпах: это один из самых распространенных на планете минералов, почти нацело слагающий одноименную осадочную породу. Минерал же назван в честь французского геолога Деода де Доломье, изучавшего Северную Италию во второй половине XVIII в. и обратившего внимание на странную породу: очень похожа на известняк (карбонат кальция), но в кислоте растворяется плохо. Поскольку доломит не очень чувствителен к слабым кислотам, включая воду, эта порода часто образует скальные останцы. Особенно много таких останцев сложено нижнетриасовыми (в Альпах как раз они и преобладают) и протерозойскими доломитами. И не только венчающего типа.
По всему миру — на Сибирской платформе и платформе Янцзы (Южный Китай), по периферии Гондваны (Испания, Марокко, Оман, Иран, Индия) и в западной части Лаврентии (Северная Америка) — при переходе от эдиакарских отложений к кембрийским белые и желтые доломиты довольно резко сменяются красными, зелеными или иссиня-черными известняками и фосфоритами. Конечно, эта внезапная, глобальная «смена парадигм» давно притягивала взгляды ученых: были написаны сотни статей о природе этого явления, а загадку доломитов объявили одной из самых неразрешимых проблем седиментологии. Однако в большинстве своем авторы опирались на представления о том, как доломиты образуются в наши дни — либо в условиях себхи (засолоненного побережья при повышенных температурах, как в Персидском заливе), либо при вторичном замещении в известняках части ионов кальция на магний (опять же повышенные температуры и минеральные растворы). Исходя из физико-химических расчетов предполагалось, что доломит с совершенной кристаллической решеткой вообще не может осаждаться в «комнатных условиях» — прямо из морской воды: для его кристаллизации в больших объемах требуется огромная активационная энергия, уровня которой ионы достигают только в теплом перенасыщенном растворе. И чем выше температура, тем быстрее идет реакция. Раз так, «доломитовые моря» — это время больших концентраций углекислого газа в атмосфере, парникового эффекта и жаркого климата. Или просто результат «старения» отложений: чем больше возраст карбонатов, тем выше вероятность, что они затронуты вторичными преобразованиями. Например, в нижнекембрийских отложениях доломитизации подверглись многие рифовые комплексы, поскольку известковые скелеты организмов-рифостроителей и отчасти морской цемент имели высокомагнезиальный состав. При этом, конечно, от первичных скелетов и кристаллов остаются лишь невразумительные пятна.
Однако временное распространение доломитовых толщ совершенно не совпадает с парниковыми эрами, а криогеновые и эдиакарские доломиты не производят впечатления сильно измененных отложений: в них прекрасно различимы очень тонкие первичные структуры — корочки морского цемента, где виден каждый кристалл, косослоистые оолитовые пески, обильные бактериальные маты (рис. 14.1).
Может, в этих структурах и кроется секрет доломитов? Действительно, на Земле есть силы, способные преодолеть вроде бы незыблемые ограничения физико-химических реакций. Это, конечно, организмы: в современных лагунах Те-Куронг (Южная Австралия) и Вермелья (Бразилия) бактериальные сообщества не только образуют строматолиты, но и создают их из… доломита (рис. 14.2). Причем лагуны эти не отличаются повышенными температурами. Если в естественных условиях бактерии-доломитообразователи обнаружили лишь в самом конце прошлого века, то экспериментально процесс был доказан еще в 1908 г. российским микробиологом Георгием Адамовичем Надсоном. Кстати, попытки вырастить доломит, воспроизводя условия себхи с использованием раствора, перенасыщенного ионами магния и карбоната, и высокие темпы испарения, успехом не увенчались: получался исключительно арагонит, в кристаллическую решетку которого магний вообще не входит.
Образование доломита можно описать следующей формулой:
Ca2+ + Mg2+ + 2CO32– ↔ CaMg(CO3)2.
Или в случае вторичного замещения:
2CaCO3 + Mg2+ ↔ CaMg(CO3)2 + Ca2+.
Но для протекания этих реакций, как уже отмечалось, требуются повышенные температуры. Сульфатвосстанавливающие бактерии условия «игры» меняют: изымая SO42–, который, как более активный, конкурирует с НCO3— за Mg2+ и тем самым препятствует осаждению доломита, они создают бескислородную щелочную среду. В таких условиях при «комнатной» температуре и преодолевается кинетический барьер кристаллизации этого минерала, поскольку SO42– затем восстанавливается до H2S, а Mg2+ снова высвобождается и реагирует с НCO3—, выделяющимся при обмене веществ. Все, что нужно сульфатвосстанавливающим бактериям (а именно они способствуют формированию доломитовых кристаллов), — это приток ионов кальция, магния и сульфата, а также наличие органического вещества. Ионы в достаточных объемах поступают с суши, а органика образуется при жизнедеятельности других членов бактериального сообщества и за счет отмершего планктона. Дело остается за малым — изменить параметры среды так, чтобы на дне водоема начали развиваться зародыши кристаллов (менее 5 мкм величиной). В меньшей степени создавать среду, благоприятную для осаждения доломита, способны аэробные галофильные бактерии и метанобразующие археи.