Книга Сотворение Земли. Как живые организмы создали наш мир, страница 24. Автор книги Андрей Журавлев

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Сотворение Земли. Как живые организмы создали наш мир»

Cтраница 24

Осталось только объяснить, как в течение 8 млн лет поддерживались столь отрицательные соотношения изотопов углерода. Ведь для этого должно было накопиться столько органического вещества, что на его окисление потребовалось бы в несколько раз больше кислорода, чем его содержится во всей современной атмосфере и гидросфере, вместе взятых. А речь ведь идет о почти бескислородных временах. Однако шурамская аномалия сопровождается и заметным отрицательным сдвигом в изотопной подписи серы, причем как в сульфатах, так и в сульфидах. Значит, дело не в объемах захороненного органического вещества, а в тщательности фракционирования изотопов серы и углерода: без сульфатвосстанавливающих микробов в появлении этого феномена не обошлось, причем только в том случае, если им старательно помогли метанобразующие археи и метанокисляющие бактерии. Если эти прокариотные сообщества были изолированы в глубинах океана, а так, учитывая его трехэтажное строение, и было, то совместными усилиями они и смогли добиться столь невероятно отрицательных показателей.

Есть и еще более внушительные свидетельства своеобразия протерозойского морского осадконакопления — целые горные массивы.

Глава 14. Доломитовые Альпы

Многие минералы названы в честь регионов, где были открыты или получили распространение (мусковит — от Московии, где эту слюду вставляли в окошки; антарктицит — от Антарктиды; висмутин — от рудника Визенматт в Германии, и от него же произошло название металла висмут). Однако Доломитовые Альпы — горы на северо-востоке Италии — сами получили имя по наиболее обычному в этом и других альпийских горных массивах минералу — доломиту [CaMg(CO3)2].

Доломит часто встречается не только в Альпах: это один из самых распространенных на планете минералов, почти нацело слагающий одноименную осадочную породу. Минерал же назван в честь французского геолога Деода де Доломье, изучавшего Северную Италию во второй половине XVIII в. и обратившего внимание на странную породу: очень похожа на известняк (карбонат кальция), но в кислоте растворяется плохо. Поскольку доломит не очень чувствителен к слабым кислотам, включая воду, эта порода часто образует скальные останцы. Особенно много таких останцев сложено нижнетриасовыми (в Альпах как раз они и преобладают) и протерозойскими доломитами. И не только венчающего типа.

По всему миру — на Сибирской платформе и платформе Янцзы (Южный Китай), по периферии Гондваны (Испания, Марокко, Оман, Иран, Индия) и в западной части Лаврентии (Северная Америка) — при переходе от эдиакарских отложений к кембрийским белые и желтые доломиты довольно резко сменяются красными, зелеными или иссиня-черными известняками и фосфоритами. Конечно, эта внезапная, глобальная «смена парадигм» давно притягивала взгляды ученых: были написаны сотни статей о природе этого явления, а загадку доломитов объявили одной из самых неразрешимых проблем седиментологии. Однако в большинстве своем авторы опирались на представления о том, как доломиты образуются в наши дни — либо в условиях себхи (засолоненного побережья при повышенных температурах, как в Персидском заливе), либо при вторичном замещении в известняках части ионов кальция на магний (опять же повышенные температуры и минеральные растворы). Исходя из физико-химических расчетов предполагалось, что доломит с совершенной кристаллической решеткой вообще не может осаждаться в «комнатных условиях» — прямо из морской воды: для его кристаллизации в больших объемах требуется огромная активационная энергия, уровня которой ионы достигают только в теплом перенасыщенном растворе. И чем выше температура, тем быстрее идет реакция. Раз так, «доломитовые моря» — это время больших концентраций углекислого газа в атмосфере, парникового эффекта и жаркого климата. Или просто результат «старения» отложений: чем больше возраст карбонатов, тем выше вероятность, что они затронуты вторичными преобразованиями. Например, в нижнекембрийских отложениях доломитизации подверглись многие рифовые комплексы, поскольку известковые скелеты организмов-рифостроителей и отчасти морской цемент имели высокомагнезиальный состав. При этом, конечно, от первичных скелетов и кристаллов остаются лишь невразумительные пятна.

Однако временное распространение доломитовых толщ совершенно не совпадает с парниковыми эрами, а криогеновые и эдиакарские доломиты не производят впечатления сильно измененных отложений: в них прекрасно различимы очень тонкие первичные структуры — корочки морского цемента, где виден каждый кристалл, косослоистые оолитовые пески, обильные бактериальные маты (рис. 14.1).


Сотворение Земли. Как живые организмы создали наш мир
Сотворение Земли. Как живые организмы создали наш мир

Может, в этих структурах и кроется секрет доломитов? Действительно, на Земле есть силы, способные преодолеть вроде бы незыблемые ограничения физико-химических реакций. Это, конечно, организмы: в современных лагунах Те-Куронг (Южная Австралия) и Вермелья (Бразилия) бактериальные сообщества не только образуют строматолиты, но и создают их из… доломита (рис. 14.2). Причем лагуны эти не отличаются повышенными температурами. Если в естественных условиях бактерии-доломитообразователи обнаружили лишь в самом конце прошлого века, то экспериментально процесс был доказан еще в 1908 г. российским микробиологом Георгием Адамовичем Надсоном. Кстати, попытки вырастить доломит, воспроизводя условия себхи с использованием раствора, перенасыщенного ионами магния и карбоната, и высокие темпы испарения, успехом не увенчались: получался исключительно арагонит, в кристаллическую решетку которого магний вообще не входит.


Сотворение Земли. Как живые организмы создали наш мир

Образование доломита можно описать следующей формулой:


Ca2+ + Mg2+ + 2CO32– ↔ CaMg(CO3)2.

Или в случае вторичного замещения:


2CaCO3 + Mg2+ ↔ CaMg(CO3)2 + Ca2+.

Но для протекания этих реакций, как уже отмечалось, требуются повышенные температуры. Сульфатвосстанавливающие бактерии условия «игры» меняют: изымая SO42–, который, как более активный, конкурирует с НCO3 за Mg2+ и тем самым препятствует осаждению доломита, они создают бескислородную щелочную среду. В таких условиях при «комнатной» температуре и преодолевается кинетический барьер кристаллизации этого минерала, поскольку SO42– затем восстанавливается до H2S, а Mg2+ снова высвобождается и реагирует с НCO3, выделяющимся при обмене веществ. Все, что нужно сульфатвосстанавливающим бактериям (а именно они способствуют формированию доломитовых кристаллов), — это приток ионов кальция, магния и сульфата, а также наличие органического вещества. Ионы в достаточных объемах поступают с суши, а органика образуется при жизнедеятельности других членов бактериального сообщества и за счет отмершего планктона. Дело остается за малым — изменить параметры среды так, чтобы на дне водоема начали развиваться зародыши кристаллов (менее 5 мкм величиной). В меньшей степени создавать среду, благоприятную для осаждения доломита, способны аэробные галофильные бактерии и метанобразующие археи.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация