Книга Сотворение Земли. Как живые организмы создали наш мир, страница 7. Автор книги Андрей Журавлев

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Сотворение Земли. Как живые организмы создали наш мир»

Cтраница 7

Так, в эдиакарских тайдалитах Южной Австралии (620 млн лет), в которых удалось проследить приливно-отливные циклы за 60 лет, синодальный ритм (от полнолуния до полнолуния или от новолуния до новолуния) длился 14,75 дня, а не 14,26, как сейчас. Чтобы вычислить циклы, составляется развертка всех слоев, где против порядкового номера каждого слоя откладывается его мощность; затем в полученной «кардиограмме» с помощью гармонического анализа находят повторы одинаковой частоты и близкой амплитуды. Синодальный цикл распознается в тайдалитах особенно отчетливо — по максимальной мощности ритма, поскольку в момент противостояния Луны, Земли и Солнца из-за эффекта сложения лунного и солнечного приливов образуется максимальная (сизигийная, от греч. σύζευξις — сопряжение) приливная волна. (В это время зеваки любят собираться у аббатства Ле Мон-Сен-Мишель в Нормандии и глазеть, как гранитный останец с аббатством на вершине превращается в остров, а большая автомобильная стоянка — в пролив.) На развертке заметны и менее крутые квадратурные пики: Луна в это время пребывает в 1-й или 3-й четверти — ось Луна — Земля расположена под прямым углом к оси Земля — Солнце, а значит, горб лунного прилива ослабляется впадиной солнечного. Всего же выявлено 1580 сизигийно-квадратурных циклов. Изучая другие особенности этих тайдалитов — суточные циклы и «прохождение» Солнца через экватор (дни равноденствия), вызывающее самые большие сизигийные приливы, можно определить, что эдиакарские сутки длились 21,9 часа (Земля быстрее совершала оборот вокруг оси), а в году насчитывалось 400 дней (и ночей).


Сотворение Земли. Как живые организмы создали наш мир

Данные по тайдалитам позволяют решить и проблему рецессии Луны, неподвластную физикам. Это явление — убегание Луны от Земли — тоже связано с приливами. Именно приливное трение, что установил немецкий философ Иммануил Кант в 1754 г. и математически обосновал физик Джордж Дарвин (сын выдающегося эволюциониста) в 1879-м, замедляет вращение Земли: поскольку период суточного вращения планеты короче времени прохождения спутника по орбите, ближний приливный горб «обгоняет» Луну, и, придерживая его, та притормаживает Землю. Сам же спутник, замедляя вращение планеты, в соответствии с законом сохранения совокупного момента вращения перемещается на все более дальнюю орбиту. Сейчас Луна удаляется со скоростью 3,81 см в год, что рассчитали с помощью лазерной локации поверхности нашего естественного спутника (уголковые отражатели были установлены американскими астронавтами и советскими станциями «Луна-17» и «Луна-21», доставившими туда луноходы почти полвека назад). И если бы скорость рецессии была постоянной, то Луна не могла бы появиться в «небе» ранее 1,5 млрд лет назад и первые миллионы лет своего существования с близкого расстояния вызывала бы мощнейшие возмущения в мантии и непрерывную канонаду супервулканов. Однако и возраст спутника мало уступает земному, и следов таких процессов, как уже сказано, в осадочных толщах нет. Так, быть может, скорость света замедляется, а вовсе не Луна удаляется? (Физики из Хьюстона предлагают и такие идеи. Хьюстон, у вас проблемы?) Впрочем, исходя из длительности эдиакарских суток, можно определить, что скорость рецессии в то время составляла 2,17 см в год, а усредненное, рассчитанное по длительности приливно-отливных циклов в разные периоды значение этой переменной не превышало 1,46 см в год. Получается, что даже 4 млрд лет назад Луна находилась более чем в 320 000 км от поверхности Земли — не намного ближе, чем сегодня (в среднем 384 400 км). Очень далеко до предела Роша — 18 000 км, на котором, согласно расчетам французского астронома Эдуарда Роша, сделанным в 1848 г., сила самогравитации спутника, подобного Луне, уравновесится приливной силой планеты, и спутник разрушится. Если же учесть, что взаимная конфигурация океанов и континентов на протяжении большей части истории планеты была иной, чем ныне, когда меридионально расположенный относительно узкий Атлантический океан создает резонансную волну (оттого и уровень приливов в нем выше, чем в Тихом), то средний показатель рецессии мог быть еще меньше.

Иными словами, взаимодействия триады Солнце — Земля — Луна практически не изменились со времени появления Луны, что случилось через 60 млн лет после образования Солнечной системы. Взывать к космическим силам для решения проблем архейского избыточного тепла бессмысленно. «Значит, — как полагал один персонаж Даниила Хармса, — жизнь победила смерть неизвестным для меня способом». На самом деле способ известен и сейчас на слуху: парниковый эффект — нагревание молекул некоторых газов во внутренних слоях атмосферы под воздействием инфракрасного излучения.

Наиболее вероятными претендентами на роль древних парниковых газов являются углекислый (СО2), метан (СН4), аммиак (NН3), закись азота (N2О), карбонилсульфид (OСS), а также, косвенно, азот (N2). (Высокое парциальное давление азота расширяет адсорбционные зоны молекул СО2, СН4 и водяного пара.) NН3, которому отводили роль парникового газа Саган и Мьюллен, а также N2О и OСS из перечня можно сразу вычеркивать: эти газы легко разрушаются ультрафиолетовым излучением и накопиться в атмосфере в достаточно больших количествах не могут. А вот N2, СО2 и СН4 не только устойчивы, но и выделяются в значительных объемах при дегазации мантии (подводные и наземные вулканы, метаморфизм) и в процессе жизнедеятельности различных микробов и, следовательно, могли насытить архейскую атмосферу. Чтобы создать ощутимый парниковый эффект в архейском эоне, правда, понадобилось бы не менее 3 % двуокиси углерода (почти в 100 раз больше, чем ныне). Однако при таких концентрациях этот газ сконденсировался бы в облака, отражающие солнечные лучи, и по мере остывания планеты оседал бы снежными шапками на полюсах, как на Марсе. Кроме того, при высоких концентрациях углекислого газа (≥1 %) ультрафиолетовые лучи частично поглощались бы его молекулами, а частично рассеивались, и независимое от массы фракционирование стабильных изотопов серы не происходило бы. Да и сидерита в архейских палеопочвах почти нет, а этот карбонат железа просто-таки обязан был накапливаться при высоком парциальном давлении СО2.

Более пригодным для разогрева мог бы быть азот, который хорошо абсорбирует инфракрасное излучение. И достаточно устойчив, чтобы попасть в ископаемую летопись даже как газ. Например, включения флюидов в гидротермальном кварце в более древних базальтах (3,49–3,46 млрд лет) кратона Пилбара содержат атмосферный газ, когда-то растворенный в поверхностных водах. Аммиак в них отсутствует, а инертный аргон и азот определяются. Соотношение молекул разных газов во включениях зависит от парциального давления каждого из них: при современном парциальном давлении N2 (7,9 × 104 Па) и 36Ar (3,2 Па) их соотношение колеблется в пределах 1,02–1,31 × 104 при температуре воды от 2 °C (средняя для глубоких вод) до 70 °C (архейский предел) и солености 0–16‰. Для архейского времени ее можно проверить по тем же включениям, и соотношение N2/36Ar не выходит за пределы 1,0 × 104. Следовательно, парциальное давление азота не превышало 5,0 × 104 Па, и с ролью основного теплоизолятора он справиться не мог.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация