Книга Сотворение Земли. Как живые организмы создали наш мир, страница 8. Автор книги Андрей Журавлев

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Сотворение Земли. Как живые организмы создали наш мир»

Cтраница 8

Остается метан. Тем более что метан, как парниковый газ, в 21–25 раз эффективнее двуокиси углерода, поскольку поступление в атмосферу 1 × 109 кг метана равнозначно 21–25 × 109 кг углекислого газа (данные Рабочей группы I при Межправительственной панели по изменению климата за 2007 г.). Усиленный парниковый эффект метана обусловлен тем, что его молекулы абсорбируют более широкий спектр лучей, чем молекулы двуокиси углерода. Установить, какой из этих газов преобладал в архейской атмосфере, можно по ее плотности. Казалось бы, вообще неразрешимая задача…

Способ определения плотности древней атмосферы предложил еще в середине XIX в. англичанин Чарлз Лайель, один из основоположников современной геологии и наставник Чарлза Дарвина: нужно измерить диаметр ископаемых отпечатков дождевых капель. Такие отпечатки хорошо сохраняются в вязких и быстро твердеющих вулканических туфах при условии, что прошедший дождь был недолгим и несильным. В противном случае следы капель либо размоются, либо перекроют друг друга. Взяв за образец отпечатки дождевых капель на современных туфах — тех, что образовались в 2010 г. после извержения вулкана Эйяфьядлайёкюдль, и сравнив их с туфами из супергруппы Вентерсдорп в Каапваале, возраст которых 2,7 млрд лет, установили: самые крупные древние капли в момент удара о землю были в среднем мельче современных. Поскольку размер капель зависит от плотности атмосферы, значит, атмосфера была в 1,5–2 раза менее плотной, чем ныне.

Конечно, при этом требуется статистическая обработка огромного количества замеров, сделанных с помощью лазерного сканирования отпечатков капель, как и при другом методе определения плотности древней атмосферы, тоже связанном с вулканитами. Поскольку свежая базальтовая лава содержит огромные объемы газов, часть из них навсегда остается в виде пузырьков, заключенных в породе, такой как континентальные базальты Бунгал на кратоне Пилбара (2,74 млрд лет). Пузырьки же скапливаются на поверхности и подошве лавового языка, там, где вязкая лава, соприкасаясь с воздухом или холодными скалами, остывает быстрее. Размер навечно запечатанных в породе пузырьков на поверхности лавового языка прямо зависит от атмосферного давления, к которому прибавляется вес лавового пласта при расчетах величины лунок на его подошве. Зная мощность пласта и плотность базальтовой лавы (2650 кг/м3) и измерив самые крупные лунки на его поверхности и наименьшие на подошве, можно вычислить плотность атмосферы. Чем ниже плотность атмосферы, тем меньше разница в размере пузырьков внизу и наверху. Древние полости, конечно, позднее заполнились вторичным аморфным кремнеземом (его мы видим сейчас как вкрапления красивых агатов и сердоликов), кальцитом или хлоритом, превратившись в каменные миндалины. Расчеты, сделанные по соотношению средних величин таких миндалин, снова показывают, что архейская атмосфера была в два раза менее плотной. И скорее всего, не могла состоять из углекислого газа или азота, но могла быть насыщена метаном.

Этот газ, несомненно, поставляли вулканы: более низкое соотношение таких элементов, как ванадий и скандий (V/Sc = 5,2) в архейских океанических базальтах, чем в протерозойских и современных (V/Sc = 6,8–7,0), указывает, что расплав формировался в глубинных восстановительных условиях и, следовательно, их излияние сопровождалось выделением метана, сероводорода и водорода. Однако основным источником метана, вероятно, была жизнедеятельность метанобразующих архей, оставивших заметные следы в изотопной летописи планеты: резко отрицательные значения δ13С (–40–60‰), характерные для архейских керогенов, накопившихся в морских и озерных условиях и в палеопочвах (рис. 4.1е, ж), указывают на двухступенчатое фракционирование стабильных изотопов углерода: сначала археями, а затем метанокисляющими бактериями (например, гамма-протеобактериями). Никакие другие группы организмов, хотя более легкий изотоп выбирают все, не способны производить отбор столь тщательно. (Археи, как и бактерии, относятся к прокариотам — одноклеточным либо колониальным существам, в клетках которых нет органелл, а наследственное вещество рассредоточено в цитоплазме.)

Остатки самих метанобразующих архей и метанокисляющих бактерий обнаружены в кремнистых сланцах возрастом 3,47 млрд лет на кратоне Пилбара. Сами микроскопические остатки, напоминающие нитчатые колониальные бактерии, были найдены четверть века назад, но их органическая природа оспаривалась. Лишь в наши дни благодаря точечному анализу изотопного состава углерода в органическом веществе удалось доказать, что некоторые микрофоссилии принадлежат метанобразующим археям (их изотопная подпись варьирует от –33‰ до –38‰), а другие — метанокисляющим бактериям (δ13С = –39‰). Углерод археи могли извлекать из ацетатов — солей уксусной кислоты (СН3СООН), которые формировались при выветривании древних континентов, либо из углекислого газа. А необходимый им для синтеза метана водород (донор электрона) выделялся при воздействии морской воды на свежую океаническую кору, где водород теряли богатые железом коматииты и базальты в результате деятельности железоокисляющих анаэробных бактерий.

Изотопная подпись углерода показывает отклонение (δ13С) в соотношении стабильных изотопов этого элемента (13С/12С) в исследуемом образце от такового в стандарте, выраженное в количестве частиц на тысячу — промилле (‰). Этот показатель рассчитывается по формуле:


δ13С = [(13С/12С) образец — (13С/12С) стандарт/(13С/12С) стандарт] × 103.

По той же формуле определяются отклонения изотопной подписи (δ) других элементов, о которых речь пойдет ниже (18О/16О, 30Si/28Si, 34S/32S, 11B/10B, 15N/14N, 7Li/6Li). Разными для каждой пары являются только стандартные образцы.

В отличие от радиоактивного изотопа (14С) доля стабильных изотопов углерода в современном мире постоянна (12С/13С = 98,89/1,11). Поэтому любые отклонения от стандартной пропорции определимы и значимы, а в случае углерода практически всегда опосредованы деятельностью живых существ.

Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, — на уровне 0,1 % (ныне < 0,0002 %) или его смесь с СО2. Поскольку в отсутствие главного окислителя — кислорода — продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН4/СО2, близкого к 1, молекулы метана полимеризовались до этана (С2Н6). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН3, OСS и серных соединений, включая аэрозоли полиатомной серы (S8).

Вход
Поиск по сайту
Ищем:
Календарь
Навигация