Melezhik V. A., ed. 2013. Reading the Archive of Earth’s Oxygenation. V. 3: Global Events and the Fennoscandian Arctic Russia — Drilling Early Earth Project. Berlin; Heidelberg: Springer, p. 1048–1552.
Michaelian K., Simeonov A. 2015. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum // Biogeosciences, 12, 4913–37.
Moczydłowska M., Landing E., Zang W., Palacios T. 2011. Proterozoic phytoplankton and timing of chlorophyte algae origins // Palaeontology, 54, 721–33.
Nance R. D., Murphy J. B., Santosh M. 2013. The supercontinent cycle: A retrospective essay // Gondwana Research, 25, 4–29.
Noffke N., Christian D., Wacey D., Hazen R. M. 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia // Astrobiology, 13, 1103–24.
Norman M. D., Borg L. E., Nyquist L. E., Bogard D. D. 2003. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: Clues to the age, origin, structure, and impact history of the lunar crust // Meteoritics & Planetary Science, 38, 645–61.
Nutman A. P. et al. 2015. 3806 Ma Isua rhyolites and dacites affected by low temperature Eoarchaean surficial alteration: Earth’s earliest weathering // Precambrian Research, 268, 323–38.
Och L. M., Shields-Zhou G. A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling // Earth-Science Reviews, 110, 26–57.
Omelon C. R. et al. 2013. Microstructure variability in freshwater microbialites, Pavilion Lake, Canada // Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 62–70.
Papineau D., Mojzsis S. J., Karhu J. A., Marty B. 2005. Nitrogen isotopic composition of ammoniated phyllosilicates: Case studies from Precambrian metamorphosed sedimentary record // Chemical Geology, 216, 37–58.
Partin C. A. et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales // Earth and Planetary Science Letters, 369–370, 284–93.
Payne J. L. et al. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity // Proceedings of the National Academy of Sciences of the USA, 106, 24–27.
Pavlov A. A., Kasting J. F., Eigenbrode J. L., Freeman K. H. 2001. Organic haze in Earth’s early atmosphere: Source of low-13C Late Archean kerogens? // Geology, 29, 1003–6.
Petroff A. P. et al. 2010. Biophysical basis for the geometry of conical stromatolites // Proceedings of the National Academy of Sciences of the USA, 107, 9956–61.
Petrov P. Yu., Semikhatov M. A. 2001. Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia // Precambrian Research, 111, 257–81.
Phoenix V. R., Konhauser K. O. 2008. Benefits of bacterial biomineralization // Geobiology, 6, 303–8.
Planavsky N. J. et al. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals // Science, 346, 635–8.
Pufahl P. K., Hiatt E. E. 2012. Oxygenation of the Earth’s atmosphere — ocean system: A review of physical and chemical sedimentologic responses // Marine and Petroleum Geology, 32, 1–20.
Ratti S., Knoll A. H., Giordano M. 2013. Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective // PLoS ONE, 8 (10), e77349. DOI: 10.1371/journal.pone.0077349
Reddy S. M., Mazumder R., Evans D. A. D., Collins A. S., eds. 2009. Palaeoproterozoic Supercontinents and Global Evolution. Bath: Geol. Soc. London, 272 p. (Geological Society of London, Special Publication, 323).
Reimer P. J. et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP // Radiocarbon, 46, 1029–58.
Reimink J. R. et al. 2016. No evidence for Hadean continental crust within Earth’s oldest evolved rock unit // Nature Geoscience, 9, 777–80.
Reith F., Brugger J., Zammit C. M., Nies D. H., Southam G. 2013. Geobiological cycling of gold: From fundamental process understanding to exploration solution // Minerals, 3, 367–94.
Riding R. 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites // Geologia Croatica, 61, 73–103.
Rosing M. T., Bird D. K., Sleep N. H., Glassley W., Albarede F. 2006. The rise of continents — An essay on the geologic consequences of photosynthesis // Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 99–113.
Rutherford E. 1904. The radiation and emanation of radium // Technics, 1–16, 171–5.
Sagan C., Mullen G. 1972. Earth and Mars: Evolution of atmospheres and surface temperatures // Science, 177, 52–6.
Schidlowski M. 1998. Application of stable carbon isotopes to early biochemical evolution on Earth // Annual Review of Earth and Planetary Sciences, 15, 47–72.
Schoell M., Wellmer F.-W. 1981. Anomalous 13С depletion in early Precambrian graphites from Superior Province, Canada // Nature, 290, 696–9.
Schopf J. W., Klein C., eds. 1992. The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge et al.: Cambridge Univ. Press, 1348 p.
Schopf J. W. et al. 2017. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope composition // Proceedings of the National Academy of Sciences of the USA. DOI: 10.1073/pnas.1718063115
Schwartzman D. W., Lineweaver C. H. 2004. The hyperthermophilic origin of life revisited // Biochemical Society Transactions, 32, 168–71.
Searle R., ed. 2016. Mid-Ocean Ridges. Cambridge: Cambridge Univ. Press, 330 p.
Sergeev V. N., Knoll A. H., Vorob’eva N. G., Sergeeva N. D. 2016. Microfossils from the lower Mesoproterozoic Kaltasy Formation, East-European Platform // Precambrian Research, 278, 87–107.
Shih P. M., Hemp J., Ward L. M., Matzke N. J., Fischer W. W. 2017. Crown group Oxyphotobacteria postdate the rise of oxygen // Geobiology, 15, 19–29.
Som S. M., Catling D. C., Harnmeijer J. P., Polivka P. M., Buick R. 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints // Nature, 484, 359–62.