Книга Бесконечная сила. Как математический анализ раскрывает тайны вселенной, страница 23. Автор книги Стивен Строгац

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Бесконечная сила. Как математический анализ раскрывает тайны вселенной»

Cтраница 23

Однако очевидно, что Архимед не хотел, чтобы его помнили за винты, военные машины или любые другие практические изобретения: он не оставил нам о них никаких записей. Больше всего он гордился своими математическими открытиями, что также заставляет меня задуматься, о каком его наследии уместно поразмышлять в День числа π. За двадцать два столетия, прошедших с тех пор, как Архимед нашел границы числа π, новые приближения появлялись много раз, но при этом всегда использовались математические методы, введенные Архимедом: приближения многоугольниками или бесконечные ряды. В более широком смысле его наследие – первое принципиальное использование бесконечных процессов для определения количественных характеристик криволинейных форм. В этом ему не было равных ни тогда, ни сейчас.

Однако геометрия криволинейных форм имеет свои пределы. Нам нужно также знать, как в этом мире происходит движение – как смещаются ткани после операции, как кровь течет по артериям, как мяч летит по воздуху. Об этом Архимед промолчал [89]. Он дал нам знания по статике, о телах, уравновешенных на рычаге и устойчиво плавающих в воде. Он был мастером равновесия. Территория впереди таила в себе загадки движения.

Глава 3. Открытие законов движения

Когда Архимед умер, вместе с ним практически умерло и математическое изучение природы. Прошло полторы тысячи лет, прежде чем появился новый Архимед. В Италии эпохи Возрождения молодой ученый по имени Галилео Галилей начал с того места, на котором остановился великий грек. Он наблюдал, как двигаются предметы, когда летят по воздуху или падают на землю, и искал в их движении числовые закономерности. Он проводил тщательные эксперименты и анализировал их. Измерял время колебания маятников и спуска шариков по наклонным поверхностям и находил удивительные правила для обоих случаев. А тем временем молодой немецкий математик Иоганн Кеплер изучал движение планет. Оба ученых были очарованы обнаруженными в своих работах закономерностями и ощущали присутствие чего-то гораздо более глубокого. Они знали, что натолкнулись на нечто важное, но не могли понять его значения. Открытые ими законы движения были написаны на незнакомом языке, коим и было дифференциальное исчисление. Это были первые намеки на него, сделанные человечеству.

До работ Галилея и Кеплера природные явления редко воспринимались в математических терминах. Архимед открыл математические принципы равновесия и плавучести в своих законах рычага и гидростатического равновесия, однако их применение было ограничено статическими ситуациями, где не было движения. Галилей и Кеплер рискнули выйти за пределы статического мира Архимеда и исследовать, как движутся объекты. Их попытки разобраться в увиденном стимулировали появление нового вида математики, которая могла бы обращаться с движением, происходящим с переменной скоростью. Такая математика должна была описывать, например, изменение скорости шарика, катящегося по наклонной плоскости, или скорости планет, ускоряющихся по мере приближения к Солнцу и замедляющихся по мере удаления от него. В 1623 году Галилей описывал Вселенную как «величественную книгу… которая всегда открыта нашему взору» [90], но предупреждал, что «читать ее может лишь тот, кто сначала освоит язык и научится понимать знаки, которыми она начертана. Написана же она на языке математики, и знаки ее – треугольники, окружности и другие геометрические фигуры, без которых нельзя понять ни единого из стоящих в ней слов и остается лишь блуждать в темном лабиринте» [91]. Кеплер выражал еще большее преклонение перед геометрией. Он полагал, что она так же вечна, как божественный разум [92], и предоставила Богу закономерности [93] для сотворения мира. Задача Галилея, Кеплера и других близких им по духу математиков начала XVII века состояла в том, чтобы взять их любимую геометрию, так хорошо приспособленную для описания мира покоящегося, и распространить ее на мир меняющийся. Проблемы, с которыми они столкнулись, были больше чем математическими; им пришлось преодолевать философское, научное и богословское сопротивление.

Мир по Аристотелю

До XVII века движение и изменение были мало понятны. И не только потому, что их трудно изучать; они просто считались отвратительными. Платон учил [94], что цель геометрии – приобрести знание о том, что существует вечно, а не возникает на мгновение, а затем исчезает. Его философское презрение к преходящим вещам перешло в более крупных масштабах в космологию его самого выдающегося ученика – Аристотеля.

Согласно учению Аристотеля [95], которое доминировало в западной мысли почти два тысячелетия (и было принято католицизмом после того, как Фома Аквинский убрал из него языческие элементы), небеса вечны, неизменны и совершенны. Неподвижная Земля находится в центре божьего творения, а Солнце, Луна и планеты вращаются вокруг нее по идеальным окружностям, увлекаемые движением небесных сфер. В соответствии с такой космологией все в земном царстве ниже сферы Луны испорчено и поражено гниением, разложением и смертью. Превратности жизни, подобно опаданию листьев, по самой своей природе преходящи, мимолетны и беспорядочны.

Хотя космология с Землей в центре выглядела обнадеживающей и здравой, неудобной проблемой представлялось движение планет. Слово «планета» означает «блуждающая» [96]. В древности планеты считались блуждающими звездами; вместо того чтобы находиться в одной точке неба подобно звездам Пояса Ориона и Ковша Большой Медведицы, которые никогда не двигаются относительно друг друга [97], планеты, казалось, перемещались по небу. За несколько недель и месяцев они переходили из одного созвездия в другое. Большую часть времени они двигались на восток относительно звезд, но иногда казалось, что они замедляются, останавливаются и пятятся назад, на запад (астрономы называют такое движение ретроградным [98]).

Вход
Поиск по сайту
Ищем:
Календарь
Навигация