Книга Роман с Data Science. Как монетизировать большие данные, страница 10. Автор книги Роман Зыков

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Роман с Data Science. Как монетизировать большие данные»

Cтраница 10

Наше мировоззрение, тоже основанное на статистическом усреднении, является абстракцией, которая не имеет никакого отношения к тому, что происходит в реальном мире. В таком мировоззрении индивидуум есть не что иное, как случайный феномен. Но в действительности индивидуум – это единственная реальность.

Если вы рассматриваете жизнь с позиций среднего арифметического, то у вас есть только некое представление о том, что такое “нормальный человек”. Но на самом деле такой “нормальный человек” просто не существует, и в жизни нам приходится иметь дело с конкретными людьми. И конкретному человеку, а не бесчисленным массам, приходится иметь дело с последствиями принятых решений».

Статистический подход, данные для которого по сути представляют «агрегаты» (суммы, количества, средние), убирает «слабые» сигналы индивидуальности. Для алгоритма человек – всего лишь строчка с несколькими цифрами и ID. Все остальное не нужно, эти «фичи» не важны, потому что конкретная модель не смогла извлечь из них выгоду. Я размышлял над моделями машинного обучения, они все слишком обобщают и упрощают, часто видят лишь черное и белое, не различая оттенков. В итоге все сводится к банальности, к скору (score), к баллам на выходе модели, на основании которых принимают решение – дать кредит или не дать и т. д. Это касается моделей машинного обучения.

Еще один недостаток статистического подхода – измерение, которое лежит в его основе. Об этом пишет в своей книге «Тирания показателей» [18] Джерри Миллер, ученый, автор многочисленных статей для New York Times и Wall Street Journal:

«Есть вещи, которые можно измерить. Есть вещи, которые полезно измерять. Но поддающееся измерению не всегда оказывается тем, что нужно измерять. Измеряемое может не иметь никакого отношения к тому, что мы на самом деле хотим узнать. Затраты на измерение могут превышать приносимую пользу. Измерения могут отвлекать нас от действительно важных вещей».

Бездумное внедрение количественных показателей везде, где только можно, – зло. Я помню, как в школе на уроках физкультуры нас гоняли по нормативам. Вы тоже бегали на скорость стометровку и прыгали в длину? Но при этом никто не прививал культуру тренировок и привычку к ежедневной физической активности. Соответствие абстрактным нормативам оказалось важнее не только твоего личного прогресса (все мы разные – усреднять нельзя!), но и любви к спорту – а это в корне неправильно. Помню, читал пост выпускника Физтеха в соцсети: «1987 год. Мы уже поступили… А потом была какая-то контрольная по физкультуре. Надо было на время переплыть физтеховский 25-метровый бассейн. Заставили всех, а потом вывесили результаты. Помню, как я их изучал: 30 сек, 35 сек, 1 мин, 2 мин, 5 мин… Последней строкой значилось: “сошел с дистанции”. Куда сошел?»

Все мы знаем про «палочную» систему в силовых органах, которая доводит до абсурда. Саша Сулим, автор книги «Безлюдное место. Как ловят маньяков в России» [8], посвященной знаменитому делу ангарского маньяка, пишет в ней о том, как их на самом деле не ловят – милиция много лет не связывала убийства женщин в серию, игнорируя очевидные факты, чтобы избежать в отчетах «висяка» и непойманный маньяк не портил статистику раскрываемости.

Но хотя количественные оценки – это плохо, никто пока не придумал ничего лучше. И надо признать, что методы этих оценок эволюционируют, усложняясь. Десять лет назад я (как, вероятно, и большинство моих коллег), оценивая эффективность сайта, фокусировался на конверсии и лишь потом начал обращать внимание на другие метрики: средняя выручка на посетителя сайта, средняя стоимость заказа, среднее число товаров в заказе и даже маржа. Одновременно эти показатели нужно делить по верхним категориям товаров и группам пользователей (если достаточно данных). Одной количественной метрики – конверсии – оказалось недостаточно: экономика интернет-магазина сложнее.

Глава 3
Строим аналитику с нуля
Роман с Data Science. Как монетизировать большие данные

В этой главе я изложу свой подход к построению аналитики в компании с нуля. За всю мою карьеру в найме я делал это дважды – в Ozon.ru, Wikimart.ru и один раз как сооснователь – в компании Retail Rocket. И еще помог сделать это нескольким компаниям в режиме консультирования, заодно поучаствовав в найме сотрудников.

Первый шаг

Когда передо мной стоит задача сделать аналитическую систему или существенно расширить ее возможности, я всегда использую двусторонний подход: определяю, какие задачи и вопросы перед нами стоят, и выясняю, какие данные есть в источниках.

Чтобы сформировать список задач, необходимо провести интервью со всеми потенциальными потребителями информации, кого это может коснуться. Создавая дизайн системы для пользователей, нужно знать ответы на следующие вопросы:

• Какие метрики понадобится считать?

• Какие дашборды собрать?

• Какую информацию отправить в интерактивные системы?

• Будут ли тут задачи ML (машинное обучение)?

Сложность этого шага в том, что потребители (заказчики) не всегда представляют, какая именно информация им понадобится. И для того чтобы выстроить эффективную систему, аналитику необходимо самому обладать хотя бы минимальной экспертизой в том бизнесе, который он анализирует. После работы в интернет-магазинах мне поначалу было непросто в Ostrovok.ru (система бронирования отелей) – да, продажи идут тоже через интернет, но тут понадобились очень специфические знания отельного бизнеса. Ваша собственная экспертиза помогает вам во время интервью с заказчиком задавать правильные вопросы и на основе ответов формировать структуру данных, которые понадобятся для решения задач клиента.

Затем я иду к разработчикам и начинаю узнавать, а что же, собственно, у них есть – какие данные они собирают и где эти данные находятся. Во-первых, меня интересуют данные, которые помогут решать задачи клиента (мне важно увидеть не только схемы, но и живые примеры таких данных – строки таблиц и файлов). Во-вторых, для меня важны те данные, которые есть, а применения им пока нет – какие задачи они могли бы решить? К финалу этого этапа у меня уже есть:

• Список вопросов, которые покрываются текущими данными.

• Список вопросов без данных и понимание того, сколько усилий потребуется, чтобы их получить.

• Данные, которые пока не решают никаких актуальных задач.

• Источники данных и их примерные объемы.

И это только первая итерация. С этим списком я иду к заказчикам, общаюсь с теми же людьми, объясняю им, можно ли ответить на их вопросы, нужны ли дополнительные данные – а потом снова иду к разработчикам. Выглядит как челночная дипломатия, но именно так я и строю план проекта.

В итоге у меня есть: список требований к системе, список имеющихся данных и задач, которые нужно выполнить, чтобы получить недостающие цифры. Выглядит просто, но бывает, что на эти шаги уходят недели. Я не выгружаю бездумно все данные из хранилища, чтобы потом начать с ходу пытаться делать метрики и дашборды. Но пытаюсь решить эту задачу в уме. Это мне сэкономит силы, а заказчикам сбережет нервы. Они заранее будут знать, что получится сразу, а что нет.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация