Но когда я проектирую более высокое здание, такое как небоскреб, – числовые значения силы ветра уже не действуют. Ветер не линеен: он не изменяется предсказуемым способом по мере набора высоты. Если попытаться экстраполировать имеющиеся данные для 100-метровых башен или использовать математические хитрости, чтобы подогнать цифры под башни высотой 300 метров, результаты будут нереалистичными. Вместо этого строение нужно испытать в аэродинамической трубе.
Часы Андроника Киррского (Башня ветров), построенные во II–I вв. до н. э. в Афинах, Греция
Когда я работала над проектом 40-этажной башни рядом с каналом Риджентс в Лондоне, я посетила один из таких объектов. Миниатюрный мир в аэродинамической трубе уже сам по себе настоящее чудо. В Милтон-Кинсе моделисты создали уменьшенную копию моего здания в масштабе 1 к 200. Кроме того, они создали уменьшенные копии всех остальных строений в этой местности, и весь макет расположился на поворотной платформе. Здания, окружающие мой проект, были очень важны для получения достоверных данных. Если бы моя башня располагалась посередине поля, то ветер воздействовал бы на нее напрямую и не встречал на пути никаких препятствий. Но в центре мегаполиса плотная застройка различными зданиями влияет на направление ветра и турбулентность, так что силы воздействуют на башню совершенно по-другому.
Я стояла за макетом своего здания и смотрела в «туннель» – длинную квадратную трубу с гладкими стенками – на огромный вентилятор по ту сторону. Вентилятор установили на ту скорость, с какой будет дуть ветер на здание в определенном направлении. Как только проверили кабели, подключенные к аппарату, и оперативники были готовы, вентилятор включили. Я вся сжалась, когда лопасти зажужжали, а на миниатюрный город передо мной обрушился вихрь холодного ветра и ударил мне прямо в лицо. Внутри модели моего здания были установлены тысячи сенсоров, которые определяли, какие силы сжатия и растяжения на них воздействуют, и эти данные передавались на компьютер. Платформу повернули на 15 градусов и весь процесс повторили снова. Таким образом система считала данные о ветрах с 24 разных направлений. За следующие несколько недель инженеры, работающие над проектом, структурировали эти данные и подготовили отчет. Я ввела полученные данные в компьютерную модель своего здания и протестировала его. Моя конструкция безоговорочно выдержала силы ветров, воздействующие на нее по всем направлениям.
Ветер может повредить строение в трех случаях. Во-первых, если над землей постройка слишком легкая, она может перевернуться, как дорожные конусы в грозу. Во-вторых, если почва слишком слабая, то из-за ветра здание может подвинуться и потонуть. Представьте яхту в ветреный день. Сила ветра толкает яхту по воде, и, если вы плывете под парусами, то это как раз то, что нужно. Но вы вряд ли захотите, чтобы из-за ветра подвинулось какое-нибудь здание или мост. Конечно, почва не настолько жидкая, как вода, так что во время грозы вряд ли вы увидите, как к вам плывет какой-нибудь дом (а если это все же произойдет, послушайте совет профессионала: бегите в другую сторону). Тем не менее почва продавливается и движется, и потому инженерам необходимо бросать якорь, то есть укладывать фундамент, чтобы здание осталось на своем месте.
В-третьих, ветер покачивает судно из стороны в сторону. Подобно деревьям, здания имеют свойство покачиваться в зависимости от силы ветра, и это нормально и безопасно. Но, в отличие от деревьев, по зданиям это не так заметно. Башни обычно проектируют таким образом, что максимальная амплитуда их отклонения достигает не более чем одной пятисотой от их высоты, так что 500-метровая башня может отклониться максимум на 1 метр. Если это произойдет слишком быстро, то людей укачает.
Чтобы конструкция не наклонялась, ее нужно сделать достаточно тяжелой. Раньше большинство зданий были относительно скромной высоты, и, так как их строили из камня и кирпича, они оказывались достаточно тяжелыми, чтобы сопротивляться силе ветра. Но чем здание выше, тем сильнее ветер. В двадцатом веке, когда мы начали возводить более высокие и легкие сооружения, то столкнулись с такой силой ветра, с которой уже нельзя не считаться.
Поэтому при строительстве современного небоскреба одного веса здания уже недостаточно для того, чтобы избежать крена. Вместо этого инженеры ищут способы укрепить постройку так, чтобы противостоять ветру. Если вы когда-нибудь наблюдали, как при сильном ветре гнется дерево и при этом выдерживает такую силу, то уже понимаете, по какому принципу инженерам удается проектировать высотные здания, которые выстоят даже в страшную бурю. Дерево устойчиво за счет крепкого, но гибкого ствола и хорошей корневой системы, а устойчивость здания зависит от его сердцевины, сделанной из стали или бетона.
Сердцевина здания, из чего бы она ни была изготовлена, должна стать прочным «стволом» всей постройки, а ее «корни» – достаточно глубоко уходить в землю
Сердцевина здания, как предполагает само название, располагается ближе к середине башни и представляет собой квадратную или прямоугольную конструкцию из стен. Она проходит через середину башни вертикально до самого верха, подобно позвоночнику в человеческом теле. Этажи здания располагаются на несущих стенах сердцевины. Обычно мы ее не видим, потому что она хорошо спрятана, а в ней самой прячутся нужные нам коммуникации: лифты, лестницы, вентиляционные системы, электропроводка и трубопровод.
Когда на постройку воздействует сила ветра, то она распределяется по всей сердцевине. Сердцевина здания устроена подобно трамплину для прыжков в воду – она прочно закреплена с одного конца и свободно двигается с другого. Ее проектируют так, чтобы она была достаточно гибкой и позволяла силе ветра распределяться до самого основания, таким образом стабилизируя сердцевину и все здание целиком, подобно тому, как корни дерева помогают ему выдерживать сильные порывы ветра.
Устройство сердцевины здания, как правило, спрятанной в середине и обеспечивающей пространство для основных коммуникаций
Стены бетонной сердцевины изготавливают из твердого бетона (с отверстиями в определенных местах для лифта и лестничных проемов), благодаря чему она очень прочная. Стальная сердцевина отличается от бетонной: просто заменить бетонные стены на стальные было бы невероятно дорого, и они были бы очень тяжелыми. Из-за самого веса стали такие стены просто невозможно построить. Поэтому вместо сплошных стен из стали строят конструкции из колонн и балок в виде треугольников и прямоугольников, получая таким образом каркас или вертикальную ферму.
Распределение сил в каждой секции стальной конструкции или в бетонной стене зависит от того, в каком направлении дует ветер. В моей компьютерной модели учтены значения силы ветра по 24 разным направлениям благодаря расчетам в эксперименте с аэродинамической трубой. Силы создают сжатие и растяжение в балках, колоннах и распорках, из которых состоит стальная или бетонная сердцевина здания. Затем компьютер рассчитывает сжатие и растяжение на каждом участке сердцевины с каждой стороны. Потом мы проектируем каждый такой участок из стали или бетона согласно наивысшим значениям сил сжатия и растяжения. Размер стальных деталей и толщина бетонных стен меняется в зависимости от того, какая сила будет на них воздействовать. Таким образом сердцевина обеспечивает устойчивость здания независимо от направления ветра. Проверить и учесть все силы, воздействующие на один участок постройки по 24 направлениям ветра, – сложная процедура, не говоря уже обо всем каркасе целиком. К счастью, в наши дни самую тяжелую работу выполняет вычислительная техника, облегчая тем самым труд инженера.