Книга Физика и жизнь. Законы природы: от кухни до космоса, страница 22. Автор книги Элен Черски

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Физика и жизнь. Законы природы: от кухни до космоса»

Cтраница 22

Они прилетали к нам только ради бутылок с молоком, закрытых золотистыми и серебристыми крышечками из алюминиевой фольги. Если вы вставали достаточно рано и осторожно выходили на крыльцо дома, то у вас появлялся шанс застукать их на месте преступления. Проворные маленькие птички, усевшись сверху на горлышко бутылки, проклевывали дырочки в тонких алюминиевых крышках и поспешно хватали клювами комочки сливок, не забывая при этом поглядывать по сторонам. Как только они замечали, что их обнаружили, они поспешно улетали (возможно, чтобы попытать счастья на крыльце соседнего дома). В течение примерно пятидесяти лет лазоревки (а это были именно они) в Великобритании промышляли похищением сливок, снискав славу настоящих мастеров этого дела. Передавая друг другу опыт, они выяснили, что под тонкой фольгой, которой в то время закрывались бутылки с молоком, скрывается настоящее сокровище – вкусные и питательные сливки. Вскоре это знание стало достоянием всей популяции лазоревок, обитающих в Великобритании. Похоже, им удалось сохранить свое знание в тайне от других видов птиц – во всяком случае этим мелким воровством занимались только они. Конец их промыслу пришел совершенно неожиданно, и вовсе не потому, что бутылки с алюминиевыми крышечками сменили пластиковые бутылки. Случилось нечто более фундаментальное. Пока коров доили фермеры, поверх молока образовывались сливки. В наши дни ситуация изменилась.

Бутылка, которую брали приступом лазоревки, содержала целый комплекс питательных веществ. Большую часть молока (почти 90 %) составляет вода, но в нем содержатся также сахара (лактоза, которую многие люди не переносят), белковые молекулы, сгруппированные в виде микроскопических круглых клеток, и более крупные шарики жира. Все эти составляющие перемешаны, но если дать молоку отстояться, возникает определенная структура. Шарики жира в молоке крошечные – от 1 до 10 микрон в диаметре, а это означает, что в миллиметровом слое такого жира по вертикали помещается от 100 до 1000 шариков. Они обладают меньшей плотностью, чем окружающая их вода, то есть в одном и том же объеме пространства содержится меньшее количество «материала». Пока шарики перемешаны со всеми остальными компонентами молока, нет особой разницы, в каком направлении они движутся. Гравитация тянет воду, окружающую эти шарики жира, вниз чуть сильнее, чем сами шарики, и жир постепенно (очень медленно) поднимается. Это означает, что его плавучесть невелика.

Возникает вопрос: как быстро поднимется жир? Важную роль в этом процессе играет вязкость. Я уже говорила, что вязкость определяется как внутреннее трение текучей среды. Иными словами, это показатель силы трения, возникающей между разными слоями текучей среды. Представьте, что вы помешиваете ложечкой чай в чашке. В ходе круговых движений ложечки жидкость вокруг нее также приходит в движение, перемещаясь рядом с другими, соседними слоями жидкости. Вода – не очень-то вязкая жидкость, и разные слои скользят друг мимо друга, практически не встречая сопротивления. А теперь вообразите, что помешиваете ложечкой густой сироп в чашке. Каждая молекула сахара крепко цепляется за другие его молекулы, находящиеся поблизости. Чтобы перемещать эти молекулы мимо друг друга, вы должны разрушать силы сцепления между ними. Помешивать ложечкой густой сироп гораздо труднее, чем обычный чай, и мы говорим, что он вязкий.

Шарики жира в молоке выталкиваются вверх по причине их плавучести. Но чтобы действительно двигаться вверх, им необходимо расталкивать в стороны окружающую их жидкость. В процессе выталкивания шариков жира окружающие их слои жидкости должны скользить друг мимо друга. Именно поэтому так важна вязкость жидкости. Чем она более вязкая, тем большее сопротивление приходится преодолевать шарикам жира в ходе подъема.

Этот процесс происходит прямо под лапками лазоревки. Каждый шарик жира выталкивается наверх по причине своей плавучести, но испытывает на себе действие силы лобового сопротивления, поскольку окружающая его жидкость должна «расступиться», чтобы уступить ему дорогу. К тому же одни и те же силы, воздействующие на одну и ту же разновидность шариков жира, приходят к разным компромиссам для разных размеров шарика. Сила лобового сопротивления оказывает большее воздействие на шарик меньшего размера, потому что площадь поверхности шарика велика по сравнению с его массой. У такого шарика весьма небольшая плавучесть, которая помогала бы ему расталкивать в стороны достаточное количество окружающего его «материала» в процессе всплытия. Поэтому, несмотря на то что маленький шарик жира находится в той же самой жидкости, он поднимается медленнее, чем шарик крупного размера. В микромире вязкость гораздо важнее, чем гравитация. Частицы движутся медленно. Размер имеет огромное значение.

В молоке более крупные шарики жира поднимаются быстрее, сталкиваются с некоторыми шариками поменьше, замедляют их и склеиваются с ними, образуя кластеры. На эти кластеры сила лобового сопротивления воздействует слабее, поскольку их размеры больше, чем отдельных шариков, а потому они поднимаются быстрее. Лазоревке, усевшейся на бутылку с молоком, остается лишь набраться терпения – и завтрак прибудет прямо к ее ногам.

А затем наступил черед гомогенизации [25]. Производители молока выяснили, что, пропустив его под очень высоким давлением сквозь очень тонкие трубки, можно раздробить шарики жира и уменьшить их диаметр примерно в пять раз. В результате масса каждого шарика снижается в 125 раз. Теперь слабая подъемная сила, воздействующая на каждый шарик и обеспечиваемая его плавучестью, полностью подавляется силами внутреннего трения текучей среды, то есть вязкостью. Гомогенизированные шарики жира поднимаются настолько медленно, что этот процесс можно вообще не принимать в расчет [26]. Простая операция по уменьшению размера шариков жира переносит сражение на другую территорию, где вязкость побеждает вчистую. Сливки уже не появляются на поверхности молока. Лазоревкам пришлось искать другие источники пропитания.

Таким образом, силы остаются теми же, но их иерархия иная [27]. Вязкостью обладают и жидкости, и газы: хотя молекулы газа не сцепляются друг с другом, как это происходит в жидкостях, они интенсивно сталкиваются, приводя к тому же эффекту внутреннего трения текучей среды, то есть вязкости. Именно поэтому насекомое и железное ядро не падают в воздухе с одинаковой скоростью (если, конечно, вы не поместите их в вакуум). Вязкость воздуха играет огромную роль для насекомого и практически никакой роли для железного ядра. В вакууме гравитация – единственная сила, которая важна в обоих случаях. А крошечное насекомое, пытающееся лететь в воздухе, использует те же приемы, что и мы для плавания в воде. Вязкость доминирует в окружении насекомых точно так же, как в отношении нас, когда мы плаваем в бассейне. Мельчайшие насекомые не столько летают, сколько плавают в воздухе.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация