Curiosity – любопытство
Первая «С» дата-грамотности – это любопытство. Обычно говорят, что любопытство кошку сгубило, а я говорю – любопытство породило дата-грамотность. Что приходит в голову, когда мы думаем о любопытстве? Я, как отец, в первую очередь вспоминаю о детях. Их любопытство просто безудержно. Они постоянно задают вопросы обо всем на свете. Зачем это им? Они пытаются понять окружающий мир, изучают его. Вырастая, мы теряем любопытство, и это самая настоящая беда. Представьте, что вы сидите за рабочим столом и изучаете данные: часто ли они вызывают у вас любопытство? Увы, мы почти разучились задавать вопросы. Мы видим перед собой данные, усваиваем их и движемся дальше. А если подключить любопытство? Оно открывает множество дверей в мир данных и аналитики.
Согласно определению, любопытство – это «стремление узнать больше о чем-либо»
[41].
Это определение сложнее, чем кажется. Давайте начнем с рассмотрения любопытства в свете определения дата-грамотности.
В рамках четырех элементов дата-грамотности «способность читать данные» и «любопытство» связаны, так сказать, родственными узами. Читая данные, то есть изучая их и понимая, что именно они содержат, мы должны испытывать любопытство. А затем можно задавать вопросы, чтобы побольше узнать о представленных нам данных. После чего мы продолжаем чтение, и цикл запускается заново.
Хороший пример чтения данных с целью «побольше узнать» – топ-менеджер, уверенный в своей дата-грамотности. Когда ему приносят отчет или сводку KPI, он читает данные, его любопытство возрастает, и он начинает задавать вопросы сотруднику, который представил данные, – чтобы получить новые или уточнить имеющиеся. Это должно стать нормой не только на уровне топ-менеджмента, но и на всех уровнях организации.
Любопытство ведет нас от чтения данных к работе с данными. Прочитав информацию и поняв ее, мы начинаем работать с данными, чтобы найти еще больше информации и получить некие полезные результаты. А затем – новый цикл. Чтобы наглядно продемонстрировать, как связаны работа с данными и любопытство, вспомним про визуализации. Например, когда мы строим сводки или панели мониторинга, то в зависимости от используемого ПО (Qlik или Tableau) можем использовать различные фильтры, раскрывающиеся списки или вкладки, чтобы продолжать работу с данными. Любопытство позволяет нам взглянуть на таблицу и задуматься о том, что еще она может содержать. Пример такой сводки приведен на рис. 8.1.
Эта таблица – мои тренировки для конкретного забега, 160-километрового ультрамарафона в Лидвилле (штат Колорадо), через сердце Скалистых гор. Любопытство заставляет нас заинтересоваться: почему одни столбики на диаграмме расстояний больше, чем другие? Что означает разница в цвете для разных тренеров? Я люблю одних больше, чем других, или одни тренировки оказались более эффективными, чем другие? Возникает бесконечная череда вопросов. Любопытство подсказывает, что нужно разбить общую визуализацию на части, отфильтровать данные и получить ответы на вопросы – или во всяком случае хотя бы запустить процесс и составить список новых вопросов.
А это уже ведет нас к третьему элементу дата-грамотности, то есть к анализу данных. Давайте взглянем на другой пример визуализации (рис. 8.2): что происходило с реальными ценами на недвижимость и размером комиссионных?
Представьте, что вы агент по недвижимости. Вы хотите узнать тенденции: колебания цен, изменения в комиссионных и т. д. В этом случае у вас тоже возникают вопросы, например: что приводило к росту средних цен в периоды, отмеченные более темным цветом? Также можно посмотреть на средний процент комиссионных. Интересно, он остается неизменным или меняется? У нас на руках есть все данные, и любопытство заставляет нас их анализировать, задавать все новые вопросы, получать новые ответы, принимать верные решения.
Последний элемент – это, конечно, общение на языке данных: еще один кусочек, без которого мозаика не сложится полностью. А эффективная коммуникация невозможна без любопытства. Почему? Потому что оно подстегивает нас задавать вопросы – в том числе и самим себе. Сможет ли та или иная аудитория полноценно воспринять эти данные, если я изложу их вот так? Каковы особенности аудитории, с которой мне предстоит общаться? Долго ли я смогу держать внимание собеседников? Какие статистические данные мне стоит использовать? И т. д. и т. п.
Итак, первую «С» дата-грамотности можно связать со всеми элементами. Далее давайте рассмотрим, какое отношение любопытство имеет к аналитическим методам.
Переход к четырем уровням аналитики не должен быть слишком сложным. Как вы, конечно, помните, эти четыре уровня представляют собой дескриптивные (описательные), диагностические, предиктивные (предсказательные) и прескриптивные (предписывающие) методы анализа. Любопытство должно помогать нам расширять эти уровни и при необходимости переходить с уровня на уровень. Чтобы было понятнее, давайте вернемся к визуализации распространения холеры, которую мы уже рассматривали. Как вы помните, эта визуализация способствовала как успешной борьбе с болезнью, так и развитию журналистики данных. Так при чем же здесь любопытство?
Во-первых, вспомним про описательный анализ и для начала представим себе гипотетический сценарий: допустим, любопытство подтолкнуло Джона Сноу составить визуализацию вспышки холеры. Я прямо вижу, как он сидит и рассуждает: «Где происходит вспышка? Есть ли у нас данные, которые это показывают?» Эти вопросы помогли ему составить прекрасную визуализацию. Мог ли он задавать другие «дескриптивные» аналитические вопросы? Например: «Влияет ли болезнь на одни группы населения больше, чем на другие?» Или: «Есть ли в городе другие районы с похожим распространением болезни?» Возможно, именно это помогло Джону Сноу пойти дальше и придумать решение проблемы.
В сфере четырех уровней аналитики, и в особенности на описательном уровне, нужно отметить ключевую роль визуализации данных:
● она порождается любопытством;
● она порождает еще большее любопытство.
Это любопытство и помогло Джону Сноу разгадать загадку вспышки холеры. В этом случае, как и во многих других, визуализация оказалась прекрасной отправной точкой для принятия очень важных решений. Мы не имеем права недооценивать этот мощнейший инструмент и одну из ключевых составляющих данных и аналитики.