Книга Холодильник Эйнштейна. Как перепад температур объясняет Вселенную, страница 66. Автор книги Пол Сен

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Холодильник Эйнштейна. Как перепад температур объясняет Вселенную»

Cтраница 66

Часто для объяснения этого принципа используется модель французского флага. Представьте прямоугольный массив изначально одинаковых клеток в растворе морфогена. Концентрация морфогена снижается слева направо. Иными словами, в левой трети прямоугольника при движении слева направо она снижается, скажем, со 100 % до 70 %; в средней трети — с 70 % до 30 %; а в последней трети — с 30 % до нуля. Пусть высокая концентрация морфогена заставляет клетки становиться синими, умеренная — белыми, а низкая — красными. Несложно увидеть, что в итоге получится узор, напоминающий французский флаг, где слева направо идут три полосы: синяя, белая и красная.

С самого начала Уолперт считал, что модель позиционной информации вступает в конфликт с идеями Тьюринга, которые в 1971 году назвал “антитезой позиционной информации”. Экспериментальные данные, похоже, поддерживали теорию Уолперта. В конце 1980-х годов удостоенная Нобелевской премии биолог из Тюбингенского университета в Германии Христиана Нюслайн-Фольхард вместе с коллегами выявила морфоген, который играет важную роль в формировании личинок плодовых мушек. Это белок, носящий имя bicoid. Он стал первым формообразующим фактором, который удалось выделить, и, казалось, работал в соответствии с теориейУолперта о позиционной информации, а не с гипотезой Тьюринга о формировании структур в процессе диффузии.


Холодильник Эйнштейна. Как перепад температур объясняет Вселенную

Личинки плодовой мушки


Личинки плодовых мушек напоминают крошечных червяков длиной около десяти миллиметров. Их цилиндрические тела состоят из одиннадцати сегментов, каждый чуть менее миллиметра длиной.

В конце 1980-х и начале 1990-х годов исследователи изучали, каким образом такие морфогены, как bicoid, определяют величину сегментов личинки плодовой мушки. Они обнаружили убедительные доказательства, что размер сегментов зависит от концентрации морфогенов, как и предсказывала теория позиционной информации. Другие открытия последнего десятилетия XX века, казалось бы, подкрепили эту теорию морфогенеза и опровергли теорию Тьюринга.

Однако в первые годы XXI века появились свидетельства, что самопроизвольное формирование структур под действием диффузии, описанное в статье Тьюринга о морфогенезе, действительно имеет место в живом мире. Сначала ученые обнаружили свидетельства в структурах, которые наблюдаются у всего вида, но проявляются по-разному у каждого отдельного представителя этого вида. Возьмем, к примеру, распределение волосяных луковиц у млекопитающих, включая человека. Все мы обладаем двухмерным массивом волосяных луковиц на голове, но расположение луковиц от человека к человеку различается. Такие структуры сложно объяснить с помощью теории позиционной информации, поскольку она гласит, что каждый эмбрион начинает развитие, имея уникальную структуру концентраций морфогена, которая затем обусловливает уникальную структуру расположения волосяных луковиц. Возникает вопрос, чем изначально обусловлена структура концентраций морфогена. Теория Тьюринга, напротив, легко объясняет формирование схожих, но при этом не идентичных структур у отдельных представителей вида.

Как мы помним из примера с формированием песчаных дюн, для начала формирования структуры необходимо крошечное изначальное отличие. Оно может быть вызвано случайным дрожанием молекул, которое происходит постоянно, или неслучайным триггером, закодированным в генах. В соответствии с уравнениями Тьюринга, создаваемые таким образом структуры будут удивительно схожи между собой, но никогда не будут идентичны. Это объясняется тем, что крошечные “вибрации”, запускающие процесс, тоже никогда не бывают идентичными. Представьте, что вы фотографируете один и тот же пляж в одно и то же время год за годом. Рисунок песчаных дюн на снимках будет схожим, однако двух идентичных фотографий вы сделать не сможете, поскольку несовершенство, запускающее процесс, год от года будет разным.

Изучая мышей, группа исследователей из Германии обнаружила убедительные доказательства того, что за распределение волосяных луковиц отвечают два морфогена, белки WNT и DKK, причем WNT выступает в роли “людоеда” с положительной обратной связью, a DKK — в роли “миссионера” с отрицательной обратной связью. Исследователи из Японии также убедительно доказали, что полосатая раскраска рыбы-ангела и крошечной рыбы-зебры формируется по механизму, описанному Тьюрингом.

В 2012 году, в год столетия со дня рождения Тьюринга, вышла целая лавина статей, подтверждающих его теорию. В одной из них, написанной профессором Джереми Грином и командой специалистов по биологии развития из Королевского колледжа Лондона, были представлены самые убедительные на сегодня доказательства.

Изначально ученых заинтересовало, каким образом в утробе формируется лицо, причем особенное внимание они уделили возникновению расщелин неба и других аномалий. Для этого они изучили формирование складок на верхнем небе в период созревания плода. Если вы проведете языком по верхнему небу, то почувствуете эти складки: у человека их четыре, у мышей — восемь.

Ученые выявили два морфогена — людоеда и миссионера, — создающих эту структуру. Это два белка: фактор роста фибробластов, или FGF, и Sonic Hedgehog, или SHH. Ученые обнаружили, что, изменяя количество морфогенов в мышиных эмбрионах, они могут менять количество складок, формирующихся у них во рту, прямо как предсказывали уравнения Тьюринга.

Через два года после выхода статьи о складках появилось глубокое исследование, проведенное командой под руководством профессора Джеймса Шарпа из Е[,ентра регуляции генома в Барселоне. Ученые объяснили, каким образом морфогены формируют кисти наших рук в соответствии с гипотезой Тьюринга. Руки и лапы всех позвоночных можно считать примером полосатого узора. В конце концов, кисти наших рук состоят из пяти примерно параллельных пальцев, или повторяющихся элементов. Комбинируя компьютерное моделирование с наблюдениями за мышиными эмбрионами, ученые выяснили, какие морфогены участвуют в создании этой структуры элементов. В этом процессе задействовано три белка: SOX9, BMP и WNT. Хотя такая система несколько сложнее двухморфогенной модели “людоед-миссионер”, описанной Тьюрингом, она работает схожим образом. Изменяя соотношение трех белков в мышиных эмбрионах, ученые доказали, что у мышей “пальцы” формируются по схеме Тьюринга. Созданные учеными компьютерные модели предсказывали, что при определенном соотношении белков вместо пяти “пальцев” у мыши будут формироваться три толстых “пальца”, и именно такая картина наблюдалась на практике.

Похоже, живые организмы используют комбинацию самопроизвольного формирования структур, описанного Тьюрингом, и принципа позиционной информации Уолперта, чтобы создавать мириады форм, которые мы видим в живом мире. Что касается кистей наших рук, биологи полагают, что механизмы Тюринга создают лекало для пяти пальцев, а градиент морфогенов Уолперта придает каждому отдельному пальцу характерную форму. Иными словами, у нас на руках по пять пальцев благодаря системе Тьюринга, но наши большие, указательные, средние, безымянные пальцы и мизинцы выглядят по-разному благодаря принципу позиционной информации. Свидетельством триумфального возвращения идей Тьюринга о формировании эмбрионов на арену биологии развития можно считать тот факт, что вскоре после публикации статьи о формировании пальцев Льюис Уолперт, в прошлом раскритиковавший подход Тьюринга, дал интервью, в котором признал его состоятельность и назвал Тьюринга “гением”.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация