Книга Кто за главного? Свобода воли с точки зрения нейробиологии, страница 11. Автор книги Майкл Газзанига

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Кто за главного? Свобода воли с точки зрения нейробиологии»

Cтраница 11

В процессе эволюции млекопитающих, по мере роста объема мозга, размер самой молодой с эволюционной точки зрения части, неокортекса, увеличивался непропорционально. Шестислойный неокортекс образован нейронами (“маленькими серыми клеточками”, как называл их месье Пуаро) и покрывает кору подобно большой складчатой салфетке. Он отвечает за сенсорное восприятие, генерацию моторных команд, пространственное ориентирование, сознательное и абстрактное мышление, речь и воображение. Увеличение объема неокортекса регулируется сроками нейрогенеза (образования нервной ткани), которые, разумеется, находятся под контролем ДНК. Чем продолжительнее период развития, тем больше происходит клеточных делений, что приводит к образованию большего мозга. Самые наружные слои, супрагранулярные (слои II и III), созревают в последнюю очередь43 и связываются преимущественно с другими участками коры44. Джефф Хатслер из нашей лаборатории сделал важное наблюдение: по сравнению с другими млекопитающими для приматов характерно более значительное пропорциональное увеличение нейронов из слоев II/III. Эти слои составляют 46% толщины коры у приматов, 36% — у плотоядных животных и 19% — у грызунов45. Они толще, потому что в них находится плотная сеть контактов между кортикальными структурами. Многие исследователи считают, что эти слои и их связи играют важную роль в осуществлении высших когнитивных функций, связывая моторные, сенсорные и ассоциативные зоны коры. То, что у разных видов животных толщина этих слоев неодинакова, вероятно, подразумевает и неодинаковую степень связности46, которая может обусловливать когнитивные и поведенческие различия видов47. Увеличение размера неокортекса позволило бы перестроить локальные кортикальные сети и повысить число связей.

Тогда как мозг приматов увеличился в размере, мозолистое тело — большой пучок нервных волокон, передающий информацию между двумя полушариями, — пропорционально уменьшилось48. Таким образом, увеличение объема мозга связано с ухудшением межполушарного взаимодействия. По мере того как наши предки приближались к человеку, полушария становились менее сцепленными. Между тем число взаимосвязей нейронов и количество локальных нейронных сетей внутри каждого полушария росли, так что процесс обработки информации обретал более локальный характер. Хотя многие сети дублируются и располагаются симметрично друг другу в обеих половинах мозга (например, сети правого мозга в основном контролируют движения левой стороны тела, а сети левого мозга — правую сторону тела), существует много таких сетей, которые есть лишь в одном из полушарий. Латерализованные (то есть присутствующие только в одном из двух полушарий) локальные сети очень распространены в человеческом мозге. В последние годы мы изучали нейроанатомические асимметрии у многих видов животных, но, похоже, у человека латерализованных сетей гораздо больше49.

Какая-то основа для человеческой латерализации должна была уже присутствовать у нашего последнего общего с шимпанзе предка. Так, мои коллеги Чарльз Гамильтон и Бетти Вермеер изучали способность макаков распознавать лица и обнаружили правополушарное доминирование в считывании обезьяньих лиц50, точно как у людей — в считывании человеческих. Другие исследователи обратили внимание на то, что и у человека, и у шимпанзе гиппокампы (парные структуры, регулирующие обучение, консолидацию пространственной памяти, настроение, аппетит и сон) асимметричны: правый больше левого51. Линия гоминид между тем претерпела дальнейшие изменения латерализации. При поиске асимметрий между другими приматами и человеком больше всего внимания, безусловно, уделялось зонам, связанным с речью. И в них действительно нашли много интересного. Например, planum temporale — часть зоны Вернике, области коры, ответственной за понимание речи, — в левом полушарии больше, чем в правом, у человека, шимпанзе и макака-резуса. Однако эта область уникальна на микроскопическом уровне только в левом полушарии человека: кортикальные мини-колонки [6] в ней шире, а расстояния между ними больше. Такая особая нейрональная структура, вероятно, означает, что в левом полушарии осуществляется более совершенный и менее избыточный способ обработки информации, хотя возможно, это признак чего-то другого, пока неизвестного. Асимметрии в кортикальной структуре задней речевой области и зоны Брока, которые отвечают за распознавание и воспроизведение речи, также существуют, а значит, когда-то происходили изменения связности, ответственные за эту уникальную способность52.

Когда мы начали изучать расщепленный мозг, то наткнулись на еще одно поразительное анатомическое отличие. В мозге шимпанзе и макака-резуса передняя комиссура — пучок нервных волокон, соединяющий между собой средние и нижние височные извилины двух полушарий, — связана с передачей визуальной информации53. Однако благодаря результатам более давних исследований, проводившихся при участии пациентов с расщепленным мозгом, мы знали, что у человека передняя комиссура передает не зрительную информацию, а обонятельную и слуховую: структура та же, функция иная. Другое яркое отличие связано с главным зрительным путем, который соединяет сетчатку глаза с первичной зрительной корой в затылочной доле (задней части мозга) и у обезьян, и у людей. При повреждении зрительной коры обезьяны все еще могут видеть объекты в пространстве, различать цвета, яркость, ориентацию и образы54. Однако люди с теми же поражениями слепнут и не могут выполнять эти задачи. Это опять-таки подчеркивает, что одни и те же структуры у разных биологических видов могут выполнять различные функции и что нам следует относиться с подозрением к межвидовым обобщениям.

Новая методика, диффузионно-тензорная визуализация, фактически позволяет составить карту нервных волокон. Мы получили возможность понять, как человеческий мозг организован локально, — увидеть это, зарегистрировать и измерить. С помощью этой технологии уже найдены дополнительные доказательства того, что топология соединений нейронов изменялась. Например, выяснилось, что дугообразный пучок — нервный пучок белого вещества, который у человека связан с речью, — устроен совершенно по-разному у шимпанзе, макаков и людей55.

Разные типы нейронов

Несколько лет назад я задался следующим вопросом: кто-нибудь размышлял над тем, отличаются ли нервные клетки разных биологических видов друг от друга, или же они все одинаковы? Я спросил об этом нескольких ведущих нейробиологов: “Если бы вы регистрировали электрические импульсы от среза гиппокампа в чашке Петри, не зная, образец ли это мозга мыши, обезьяны или человека, смогли бы вы определить, что именно перед вами?” В то время большинство ответов звучало примерно так: “Клетка есть клетка есть клетка” [7]. Это универсальная единица обработки информации, отличающаяся у пчелы и у человека только размером. Если надлежащим образом масштабировать нейроны мыши, обезьяны и человека, невозможно будет увидеть между ними никакой разницы. Однако сейчас преобладает еретическое представление, которое возникло в последние десять лет: все нейроны неодинаковы, а некоторые их типы встречаются лишь у определенных биологических видов. Более того, тот или иной тип нейронов якобы может обладать уникальными свойствами у того или иного вида.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация