Как обычно, чтобы высокие уровни причинной значимости соответствовали истинным причинам, нужно быть уверенными, что мы точно измерили силу (и, следовательно, вероятности репрезентативны относительно истинных значений) и, как в байесовских сетях, общие причины (или можно переоценить значимость других причин либо выявить ложные зависимости). Для этих временных рядов также понадобится сделать допущение, что отношения остаются стационарными во времени. Причина в том, что если отношения изменяются во времени, то, возможно, две переменные будут независимы для одной, но не для другой части временных рядов. Когда мы исследуем весь временной ряд сразу, отношения могут показаться слабыми, даже несмотря на их относительную силу на фоне некоторой части ряда.
Отвечая на вопрос «почему», мы часто забываем о вопросе «когда». В ряде методов можно уточнить временное запаздывание, или окно, так что нетрудно рассчитать значимость, скажем, близкого контакта с человеком, больным гриппом, для развития симптомов заболевания в период от одного до четырех дней. Но, если мы не имеем никакого понятия о том, что вызывает грипп, как поймем, что протестировали именно это «окошко»? Вот одно из слабых мест, присущих подобным подходам: если мы протестируем неверный набор временных рядов, то либо не сумеем выявить нескорые реальные причины, либо найдем только подгруппу в пределах истинного набора временных задержек.
Тестирование всех мыслимых запаздываний не слишком разумная стратегия, так как это значительно повышает сложность вычислений, при этом даже не гарантирует, что будут найдены правильные временные паттерны. Дело в том, что выборка данных часто берется неравномерно по времени и разброс может быть слишком велик (при малом количестве измерений и больших пробелах между ними), а пробелы не обладают свойством выборочного распределения.
Скажем, у нас есть результаты лабораторных испытаний для группы пациентов, а также врачебные предписания для них. Даже если лекарство однозначно повышает сахар в крови на протяжении недели, имеющиеся у нас измерения вообще (или в большей части) могли проводиться не сразу после приема препарата. Может также иметь место запаздывание от даты назначения до начала приема лекарства, так что кажущаяся длительная задержка между предписанием и повышением глюкозы на самом деле способна проявиться только через неделю после лечения. В результате для каждого отдельного временного интервала может не хватить объема наблюдений. Применение временных окошек может принести пользу (поскольку, если взять их вместе, удастся получить достаточное количество наблюдений за 5–10 дней), хотя по-прежнему не решается проблема с тем, какое именно временное окошко тестировать.
Один из способов выявления временных паттернов на основе данных – набирать потенциальные паттерны и потом корректировать, исходя из данных. Реальным этот метод делает мера значимости. Посмотрим на рис. 6.10, когда тестируемое временное окно перекрывает истинное, но отличается от него. Это и есть возможные сценарии. По мере того как окно растягивается, сужается или смещается, мы пересчитываем причинную значимость. В каждом случае, меняя некорректные окна, чтобы приблизиться к истинному, мы улучшаем рейтинг значимости. При наличии временного окна наша переменная-следствие и будет следствием, которое случается в некотором временном диапазоне. Если окно намного шире истинного, как на рис. 6.10, будет множество примеров, когда можно ожидать, что следствие произойдет, но этого не случится (следовательно, рейтинг значимости будет исключен для всех этих следствий, по видимости не случившихся после причины). С другой стороны, если окно слишком узкое, следствие будет казаться вероятным, даже когда не вызывается потенциальной тестируемой причиной. По мере того как временные паттерны приближаются к реальным, значимость возрастает, и можно доказать, что она соответствует действительной
[260].
Рис. 6.10. Возможные случаи, когда временное окно причины при тестировании образует перехлест, но отличается от истинной причины, в которой производит следствие
Причинность по Грэнджеру
Вероятности применяются чаще всего тогда, когда данные включают дискретные события: к примеру, наличие или отсутствие диагноза; лабораторные значения, сгруппированные по категориям «нормальное», «высокое» и «низкое». Но что, если требуется понять, как изменения в ценах на одну акцию приводят к модуляциям в объемах торгов другой ценной бумагой? Тогда на самом деле мы хотим выяснить не то, как одно ценовое значение приводит к росту объема торгов, а размеры ожидаемого роста.
В то время как вероятностные методы тестируют, насколько шансы того, что случится некое событие, меняются в зависимости от причины, мы также можем проверить, как меняется значение переменной относительно изменений в причине. Большинство методов, которые мы рассматривали до сих пор, доступны к использованию как раз подобным образом.
Хотя, строго говоря, традиционно это не считается каузальностью (по мотивам, которые мы вкратце рассмотрим), один из общеприменимых методов причинного осмысления на основе данных временных рядов с непрерывными значениями называется «причинность по Грэнджеру»
[261]. Взяв за основу труды Винера (1956), который утверждал, что причины повышают предсказуемость следствий, Грэнджер разработал прикладной метод тестирования каузальности в финансовых динамических рядах, таких как прибыль от ценных бумаг. Идея в следующем: причина предоставляет некую информацию о следствии, которая не содержится в других переменных и позволяет лучше предвидеть значение следствия. И, если мы возьмем всю сумму знаний до определенного момента, вероятность того, что следствие имеет некоторое значение, будет отличаться, если мы удалим причину из этого набора сведений.
На практике мы не располагаем неограниченным набором информации и не можем использовать ее всю, даже если получим благодаря сложным вычислениям.
Не вдаваясь в детали, скажем: существуют две формы причинности по Грэнджеру, каждая из которых приводит к совершенно разным логическим заключениям. Важно понять, что ни та, ни другая по-настоящему не соответствуют причинности. Но, поскольку их часто применяют в поддержку каузальных утверждений, полезно разобраться, на что они способны, а на что нет.
Во-первых, двумерная причинность по Грэнджеру ненамного отличается от корреляции (хотя сама мера несимметрична). Она включает всего две переменные и просто сообщает, может ли одна помочь в прогнозировании другой. Так, если мы измеряем погоду, задержки авиарейсов и продажи кофе в аэропорту, то в состоянии выявить зависимости только между парами, например прогнозируя задержки авиарейсов по погоде. Даже если нет скрытых переменных, такой подход не дает никаких преимуществ для предотвращения искажений. Таким образом, двумерная причинность по Грэнджеру иногда приводит к обнаружению ложных мотивационных взаимосвязей между следствиями с общей причиной. Если плохая погода вызывает задержки отправления и самолетов, и поездов, мы можем некорректно заключить, что отложенные авиарейсы оказываются причиной запаздывания железнодорожного транспорта, и наоборот. В соответствии с этим методом легко сделать вывод, что все до единого более ранние звенья в цепочке причин становятся поводами для более поздних, вместо того чтобы выявить только непосредственные взаимосвязи. То есть если у нас есть последовательность событий, можно решить, что первое есть причина последнего, поскольку мы не принимаем в расчет промежуточные звенья.