Книга Курс на Марс. Самый реалистичный проект полета к Красной планете, страница 49. Автор книги Рихард Вагнер, Роберт Зубрин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Курс на Марс. Самый реалистичный проект полета к Красной планете»

Cтраница 49

Таблица 6.1. Элементы поверхности Марса, интересные для исследования

Курс на Марс. Самый реалистичный проект полета к Красной планете

* Хаотичные области – области разнообразного рельефа на небесном теле. – Прим. пер.


Каждый пилотируемый полет на Марс обойдется нам в миллиарды долларов. Стоимость миссии может быть снижена за счет новых технологий – например, ядерного реактивного двигателя или более дешевых ракет-носителей. Но, даже если такие исследования будут поощряться и поддерживаться, введение каждой новой технологии обойдется в миллиарды долларов, так что в конечном итоге расходы марсианскую миссию удастся сократить примерно в два раза. А вот работа над увеличением дальности хода транспортных средств для перемещения по поверхности Марса, вероятно, обойдется дешевле и способна повысить эффективность исследований в 100 раз и даже больше.

Понятно, что нет ничего важнее для определении эффективности затрат в нашем деле, чем мобильность.

Транспортные средства на Марсе

Машины для Марса можно строить разные: колесные, гусеничные, полугусеничные и даже на механических ногах – все они успешно станут двигаться по поверхности. Куда важнее то, каким образом транспортное средство будет снабжаться энергией.

Единственные автомобили, до сего момента использовавшиеся в космосе, – это лунные роверы программы «Аполлон», негерметичные и работающие от батарей. Если бы мы взяли самые современные литий-ионные аккумуляторы (похожие на те, что стоят в видеокамерах) и зарядили бы их, чтобы роверу хватило питания на 10 часов, такая система могла бы производить около 10 Вт энергии на каждый килограмм своего веса. А вот если бы вместо батарей мы использовали водородно-кислородные топливные ячейки вроде тех, что обеспечивали электроэнергией шаттлы, то соотношение энергия/масса в системе удалось бы поднять примерно до 50 Вт/кг. Это, конечно, был бы прогресс, но другая знакомая вам технология кажется куда более эффективной.

Соотношение энергии и массы у двигателей внутреннего сгорания может достигать значения 1000 Вт/кг. Это в 20 раз выше, чем у водородно-кислородных топливных ячеек, и в 100 раз выше, чем у систем, работающих от аккумуляторов. Двигатели внутреннего сгорания обеспечивают гораздо большую мощность при значительно меньшей массе в сравнении со всем остальным (и именно по этой причине стоят в подавляющем большинстве земных транспортных средств). Данное преимущество можно использовать для наших марсианских автомобилей. При такой массе системы жизнеобеспечения размеры автомобиля будут прямо пропорциональны его скорости, которая, в свою очередь, пропорциональна энергии. Но если вы попытаетесь добиться одинаковой мощности двигателя внутреннего сгорания и альтернативной системы, то вес последней легко может оказаться чрезмерным. Представьте себе ровер, имеющий мощность 50 кВт (около 65 л. с). Масса двигателя внутреннего сгорания в этом случае будет около 50 килограммов, тогда как топливных баков для обеспечения такой же мощности понадобится около 1000 килограммов. В автомобиль с двигателем внутреннего сгорания можно будет погрузить исследовательского оборудования и продовольствия на 950 килограммов больше, чем в ровер, работающий на водородно-кислородном топливе, и при этом в плане выносливости, грузоподъемности и размера первое транспортное средство будет выигрывать.

Кроме того, автомобиль с двигателем внутреннего сгорания можно практически неограниченно снабжать энергией, что позволит экипажам на выезде проводить энергоемкие научные исследования на таких расстояниях от базы, о которых раньше мы и не помышляли. Например, экипаж может отправиться на герметизированном автомобиле с двигателем внутреннего сгорания на разведку к удаленному участку и сгенерировать 50 кВт энергии для запуска буровой установки, чтобы попытаться достичь уровня марсианских грунтовых вод. Скорость передачи данных также пропорциональна энергии, а следовательно, в случае с двигателем внутреннего сгорания она может быть намного выше, что, в свою очередь, увеличит и безопасность экипажа, и научную результативность поездки. Более того, благодаря двигателям внутреннего сгорания можно будет использовать маленькие и легкие электростанции, необходимые для быстрых и маневренных одноместных вездеходов. Как и на Земле, такие универсальные внедорожники сильно помогут исследователям, работающим в марсианской «глубинке».

Двигатели внутреннего сгорания также могут быть использованы, чтобы обеспечить большим количеством энергии главную базу или удаленную стройку (бульдозеры и пр.). В конечном итоге большее энерговыделение таких двигателей обеспечит большую мобильность при использовании компактных, легких и гораздо более функциональных транспортных средств, что сделает программу исследования Марса эффективной и экономически выгодной во всех отношениях. Если мы хотим добиться там чего-либо серьезного, нам понадобятся транспортные средства с двигателями внутреннего сгорания. Но есть одна загвоздка.

Для использования таких машин требуется очень много топлива. Например, по моим оценкам, герметичный ровер весом в тонну потребует около 0,5 килограмма метаново-кислородного топлива на один километр пути. Таким образом, поездка на 800 километров от базы и обратно обойдется примерно в 400 килограммов топлива. Если преодолевать в среднем по 100 километров в день, экспедиция займет восемь дней. За те 600 дней, что миссия будет оставаться на Марсе, придется совершить много таких поездок. Если использовать ровер описанным образом в течение всего 300 дней из 600, он израсходует 15 тонн метаново-кислородной смеси. Необходимость импортировать такую массу топлива с Земли только для обеспечения работы ровера – это настоящая логистическая катастрофа. Если мы хотим пользоваться на Марсе транспортными средствами с двигателями внутреннего сгорания, мы должны быть в состоянии изготовить для них топливо на месте.

На марсианские автомобили можно установить любой из двигателей внутреннего сгорания, что сегодня применяются на Земле, в том числе бензиновый, дизельный или газовые турбины. Однако, если вы станете сжигать чистое ракетное топливо, например смесь метана и кислорода, двигатель будет сильно перегреваться и быстро выйдет из строя. Разбавление горючей смеси атмосферным углекислым газом, подаваемым вентилятором, снимает проблему. Диоксид углерода действует как инертный буферный газ, он будет снижать температуру пламени так же, как на Земле это делает содержащийся в воздухе азот.

Размер марсианского ровера, приводимого в движение путем химического сгорания, будет в решающей степени зависеть от соотношения энергии и массы используемого топлива. Хотя на Марсе в принципе можно использовать любое двухкомпонентное топливо, не следует забывать об издержках транспортировки, поэтому большая его часть должна быть изготовлена на месте из марсианских материалов. Список возможных комбинаций приведен в табл. 6.2.


Таблица 6.2. Потенциальные виды двухкомпонентного топлива для транспортных средств на Марсе

Вход
Поиск по сайту
Ищем:
Календарь
Навигация