Книга Курс на Марс. Самый реалистичный проект полета к Красной планете, страница 53. Автор книги Рихард Вагнер, Роберт Зубрин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Курс на Марс. Самый реалистичный проект полета к Красной планете»

Cтраница 53

Еще один способ добычи необходимого кислорода состоит в том, чтобы просто взять часть метана, полученного в реакции (1), и разложить в процессе пиролиза на углерод и водород:

СН4 → С + 2Н2 (6)

Полученный таким образом водород будет затем снова использован для взаимодействия с местным углекислым газом в реакции (1). Через некоторое время в камере, где проводилась реакция (6), накопится какое-то количество графита (сегодня это самый распространенный на практике метод промышленного получения пирографита). Поступление метана в реактор будет прекращено, вместо него камеру заполнит горячая газообразная двуокись углерода. Она начнет вступать в реакцию с графитом с образованием СО, который затем будет отводиться из камеры.

CO2 + С → 2СО (7)

Использовать две камеры – одну для пиролиза, другую для очистки – мне предложили как самое простое решение проблемы с дополнительным кислородом Джим Макэлрой и его исследовательская группа из «Гамильтон Стандарт».

Дело в том, что записать на бумаге систему химического синтеза как серию уравнений легко, куда труднее построить модуль, работающий должным образом. Однако к реактору, о котором я вам рассказал, это не относится – я знаю наверняка, потому что сам руководил рядом проектов по созданию всех блоков ЗПТМ с нуля. Первый и в некотором роде наиболее драматичный из этих проектов был начат осенью 1993 года, когда Дэвид Каплан и Дэвид Уивер из Космического центра имени Линдона Джонсона НАСА спросили меня, сможет ли «Мартин Мариетта» продемонстрировать рабочую модель ЗПТМ, которую я пропагандировал на конференциях и в статьях. Однако в той истории произошла неприятность: НАСА выделило всего 47 тысяч долларов на мой проект, а это очень маленький бюджет для того, чтобы разработать и продемонстрировать новую аэрокосмическую технологию, к тому же мне следовало закончить к январю 1994 года. Это было достаточно рискованно – в «Мартин Мариетта» 47 тысяч долларов обычно платят за презентацию с парой десятков слайдов. Однако я твердо верил в то, что технология проста и что проект, кажущийся нереализуемым при имеющемся бюджете и сроках, в принципе осуществим. После долгих обсуждений с руководством я принял вызов. В октябре 1993 года «Мартин Мариетта» заключила контракт на выполнение работы, Дэвид Каплан возглавил программу, Стив Прайс был назначен руководителем проекта со стороны «Мартин Мариетта», а я выступал в качестве главного исследователя и ведущего инженера.

Конструкция системы была разработана в октябре 1993 года, и большую часть ноября мы ждали, пока нам пришлют детали. К концу месяца мы получили все необходимые компоненты и принялись за строительство завода в натуральную величину согласно требованиям миссии по доставке марсианского грунта.

Реактор Сабатье создали с нуля, заполнив металлическую трубу 36 сантиметров в длину и 5 сантиметров в диаметре рутениевым катализатором, полученным от некой компании, поставляющей химическое сырье. (Позже выяснилось, что мы взяли его в десять раз больше по объему, чем требовалось для системы, но мы были стеснены жесткими сроками, которые не позволяли нам делать что-либо дважды. Поэтому проектирование с запасом показалось нам хорошим вариантом.) Электролизер, имевший длину всего в 25 сантиметров и весивший 3 килограмма вместе с водой, был взят из устройства для производства водорода в лаборатории «Паккард Инструмент». Мы также добыли нихромовые нагреватели, чтобы довести реактор Сабатье до рабочей температуры (в дальнейшем тепло, выделяемое в ходе химических реакций, должно было поддерживать его горячим без использования электричества). Наконец, мы построили систему конденсации, чтобы отделять произведенный метан от произведенной воды, а затем испытали всю систему, включая датчики давления и температуры и измерители расхода газа, установленные в стратегических точках и подключенные к компьютеру. К середине декабря система была завершена и готова к работе.

15 декабря ее включили в первый раз, запустив только реактор Сабатье. К концу второго часа работы уровень воды в конденсаторе заметно поднялся – а это значило, что система работает. Последующий лабораторный анализ газа, отходящего из реактора Сабатье, показал, что тот с 68 %-ной эффективностью преобразует водородное сырье и углекислый газ в метан и воду.

В последующие дни в систему были внесены изменения, чтобы повысить ее производительность. К 22 декабря, когда водород для реактора Сабатье подавался из электролизера, мы достигли эффективности в 85 %. 5 января система в первый раз заработала в полноценной конфигурации, и ее эффективность при этом составила 92 %. Наконец, 6 января 1994 года она полноценно проработала день, показав 94 %.

В результате этого последнего запуска были достигнуты все тестовые цели, и у нас еще остались деньги, чтобы оплатить подготовку отчета [24].

После этого успеха систему удалось усовершенствовать за счет небольших сумм, выделенных сначала Космическим центром имени Линдона Джонсона, а потом ЛРД. Были добавлены поглощающие слои, которые позволяли блоку получать углекислый газ из емкости, моделирующей атмосферу Марса при ее нормальном давлении. Эффективность реактора Сабатье увеличилась до 96 %, а сам он был уменьшен в 10 раз и обзавелся 2-килограммовым холодильником на цикле Стирлинга, что позволило нам сжижать весь получаемый кислород и хранить его в криогенном сосуде Дьюара. Также были добавлены автоматизированные системы управления, благодаря чему устройство стало работать по 10 дней подряд без вмешательства оператора. Общая масса всех рабочих компонентов составила в конечном итоге около 20 килограммов, а общая необходимая мощность была менее 300 Вт [25], при том что система позволяла получать 400 кг ракетного топлива для поддержки миссии доставки марсианского грунта.

В 1996 году я ушел из «Локхид Мартин» (так к тому времени назывался «Мартин Мариетта»), чтобы основать собственную компанию, «Пионер Астронотикс». Мы разработали множество дополнительных устройств, демонстрирующих обратную конверсию водяного газа, а также получение метанола, бензола, этилена и пропилена, а еще создали системы, объединяющие реакцию Сабатье, электролиз и ОКВГ.

Моя старая команда в «Локхид Мартин» – в настоящее время ее возглавляет Ларри Кларк – продолжает совершенствовать реакторы Сабатье и электролиза, стремясь добиться большей эффективности и выработать конфигурации, наиболее подходящие для полета. Исследования показывают, что в системе по производству топлива, подогнанной по размеру для миссии «Марс Директ», отношение масс для всех реакторов окажется еще более выраженным, так как процент массы системы, отведенной под паразитные элементы, такие как измерители расхода газа и датчики давления, будет крайне мал.

Итак, мы все-таки можем производить ракетное топливо и кислород прямо на Марсе.

Связь с базой

Используя роверы с двигателями внутреннего сгорания, первые исследователи Красной планеты смогут уезжать от базы достаточно далеко, но как они при этом будут поддерживать связь? Все-таки диаметр Марса чуть больше половины диаметра Земли, и линия горизонта там пролегает значительно ближе, примерно в 40 километрах от наблюдателя, если допустить, что поверхность плоская, как равнины Канзаса, – но Марс совершенно точно не Канзас. Так что, отправляясь куда-нибудь, команда астронавтов будет выезжать за линию горизонта, а это исключает передачу радиосигналов в зоне прямой видимости. Как же в таком случае поддерживать связь с базой?

Вход
Поиск по сайту
Ищем:
Календарь
Навигация