Как только продается хоть один фрабезоид, кривая идет вверх, как мы видим на этом графике:
Если присмотреться, можно увидеть, что в последний квартал дела шли не так гладко: хотя в этот период кривая по-прежнему идет вверх, происходит это не так резко. Это-то и поможет вам понять, что продажи упали. Но нашему мозгу сложно уловить подобные нюансы (то, что в математике называется первой производной, — вычурное словечко для наклона линии). Итак, при взгляде на график кажется, что дела компании идут в гору, а вы меж тем заставили огромное количество потребителей поверить в то, что фрабезоиды — по-прежнему самая желанная покупка.
Так же поступил и Тим Кук, CEO компании Apple, во время своей последней презентации по продажам iPhone
[36].
© 2013 Die Verge, Vox Media Inc. (live.theverge.com/apple-iphone-5s-liveblog/)
Отображение на графике несущественных данных
В мире столько всего происходит, что всегда находится место совпадениям. Количество зеленых грузовиков на дороге может увеличиваться одновременно с вашей зарплатой; когда вы были ребенком, количество телешоу могло увеличиваться так же, как и ваш рост. Но это не означает, что одно есть причина другого. Статистики называют это корреляцией.
Известно, что корреляция не подразумевает причинность, однако об этом правиле часто забывают в рассуждениях. Для ошибок такого рода в формальной логике есть две формулировки.
1.-Post hoc, ergo propter hoc
. Данное логическое заблуждение возникает из уверенности в том, что если один факт (Y) произошел после второго (X), значит, X стал причиной Y. Обычно люди чистят зубы до того, как пойти утром на работу. Но чистка зубов не есть причина, по которой они идут на работу. В данном случае все может быть наоборот.
2.-Cum hoc, ergo propter hoc
. Это логическое заблуждение состоит в том, что из совпадения по времени двух фактов заключают, что один должен быть причиной второго. Тайлер Виджен, студент юридического факультета Гарвардского университета, написал книгу и создал сайт, где собрал примеры странных совпадений — корреляций, например таких
[37]:
Эти данные можно интерпретировать четырьмя разными способами: 1) смерть в бассейне вызывает выход нового фильма с Николасом Кейджем; 2) выход фильмов с Николасом Кейджем становится причиной смерти в бассейне; 3) некий третий фактор (который еще не установлен) влияет на оба показателя; 4) показатели никак не связаны между собой, и корреляция — чистой воды совпадение. Если мы не отделим корреляцию от причинности, то сможем со всей уверенностью заявить, что график Виджена «доказывает» посильную помощь Ника Кейджа в предотвращении всех этих смертей в бассейне. И нам остается только поддерживать образовавшуюся тенденцию, чтобы актер и дальше развивал свою удивительную способность, которую он с блеском продемонстрировал в 2003 и 2008 годах.
В некоторых случаях между показателями, кажущимися взаимосвязанными, нет никакой настоящей связи: факт их корреляции — просто совпадение. В других же случаях можно найти между ними случайную связь, а то и состряпать более-менее разумную историю, которая подстегнула бы к поиску новых данных.
Мы можем исключить первое объяснение, так как на создание и выпуск фильма требуется время, поэтому пик смертности от утопления не мог вызвать пик популярности Ника Кейджа в том же году. Как насчет второго пункта? Возможно, люди настолько проникаются сюжетом остродраматических фильмов Кейджа, что не помнят себя и, как следствие, тонут. Возможно, по той же причине увеличивается и количество автомобильных аварий, а также травм, полученных в результате работы с тяжелым оборудованием. Мы не найдем ответов на эти вопросы, пока не проанализируем больше данных.
Что же насчет третьего фактора, который влияет на оба показателя? Можно предположить, что влияние оказывает экономика государства: чем более она развита, тем больше инвестиций идет в досуг — выпускается больше фильмов, люди чаще ездят в отпуск, ходят плавать. Если это так, то ни одна из ситуаций, частоту которых описывает график, — выход фильма Ника Кейджа и утопление — не бывает причиной другой. Свою роль тут сыграл третий фактор — экономика, — он и приводит к изменениям в обоих случаях. Статистики называют это третьим фактором x. И подобных случаев множество.
Вероятнее всего, эти две ситуации совсем никак не взаимосвязаны. А если присмотреться и хорошенько подумать, то мы обязательно обнаружим, что здесь одновременно изменяются два не связанных друг с другом показателя.
Продажи мороженого увеличиваются одновременно с ростом числа людей в шортах. Нельзя сказать, что один из фактов — причина второго. Третий фактор x, который на самом деле влияет на оба факта, — это повышение температуры летом. Количество телешоу, выпущенных в эфир в то время, когда вы были ребенком, возможно, коррелировало с вашим ростом, но несомненно, что причиной одинакового изменения обоих показателей стал общий период времени, когда: а) телевидение расширяло свой рынок и б) вы росли.
Как же тогда понять, в каких случаях корреляция указывает на причинность? Во-первых, можно провести контролируемый эксперимент. Во-вторых, включить логику. Но будьте внимательны — тут легко утонуть в трясине пустословия: это дождь вчера вынудил людей надеть дождевики? Или причиной стало желание не намокнуть, появляющееся, когда идет дождь?
Эту идею хорошо представил Рэнделл Манро
в своем веб-комиксе xkcd: разговаривают две фигурки, очевидно, студенты колледжа
[38]. Один говорит, будто раньше думал, что корреляция подразумевает причинность. Потом, правда, походил на занятия по статистике и теперь уже так не думает. На что второй студент отвечает: «Кажется, занятия сделали свое дело». А первый ему на это: «Да, может быть».