Онлайн книга «Путеводитель по лжи. Критическое мышление в эпоху постправды»
Мы знаем, что мы это знаем: | Мы знаем, что мы этого не знаем: |
ХОРОШО — ПОЛОЖИТЕ ЭТО В БАНК | НЕПЛОХО — МЫ МОЖЕМ УЗНАТЬ ОБ ЭТОМ |
Мы не знаем, что мы это знаем: | Мы не знаем, что этого не знаем: |
БОНУС | ОПАСНОСТЬ — ПОДВОДНЫЕ КАМНИ |
Самую большую опасность представляют ситуации, в которых есть неизвестное неизвестное. Наиболее страшные катастрофы, случившиеся по вине человека, можно отнести на счет таких вот случаев. Когда обваливаются мосты, страны проигрывают войны, люди лишаются права выкупить дом по закладной — все это зачастую случается потому, что кто-то не учел вероятности того, что не располагает всей информацией, и долгое время ошибочно полагал, будто просчитал все возможные случаи. Одна из основных целей обучения в докторантуре по специальности юриспруденция или медицина, MBA или военное руководство — научить определять то, что неизвестно, и по зрелом размышлении превращать неизвестное неизвестное в известное неизвестное.
Ну и еще одна группа, о которой министр Рамсфелд не сказал ни слова, — неверное известное, вещи, которые на самом деле не таковы, как мы о них думаем. В эту категорию относятся неверные по сути утверждения, в которые мы верим. И это одно из самых грустных и порой фатальных заблуждений.
Вспомните часть 1 и описанную в ней идею байесовской вероятности, в которой вы можете поменять свою уверенность в чем-либо, основываясь на новых данных или же на априорной вероятности того, что что-то верно, — например, вероятности, что у вас пневмония при условии, что у вас наблюдаются определенные симптомы, или вероятности того, что какой-то человек будет голосовать за конкретную партию с учетом своего места жительства.
Пользуясь байесовским методом, мы назначаем гипотезе субъективную вероятность (априорную), а затем уточняем ее в свете собранных данных (апостериорная вероятность, потому что именно эти данные мы получаем, проведя эксперимент). Если бы у нас еще до проверки имелись основания верить, что гипотеза правильна, то нам было бы легко подтвердить ее при наличии небольшого количества доказательств. Если бы еще до проверки у нас были основания считать гипотезу маловероятной, то нам понадобилось бы больше доказательств.
Таким образом, согласно байесовской теории, маловероятные утверждения требуют большей доказательной базы, чем те, что заслуживают большего доверия. Предположим, ваша подруга говорит, что она видела, как что-то пролетело за окном. Вы можете выдвинуть три гипотезы с учетом ваших знаний об этом окне: это могли быть малиновка, воробей или свинья. И для всех этих гипотез вы можете назначить вероятности. И вот ваша подруга показывает вам фотографию свиньи, пролетающей за окном. Ваша априорная вероятность, что свиньи летают, была настолько мала, что и апостериорная вероятность оказалась не больше, даже при наличии доказательства. Возможно, сейчас вы уже выдвигаете новые гипотезы, что фотография была поддельной или что ваша подруга применила какой-то другой трюк. И если вся эта история напомнила вам четырехчастную табличку и вероятность, что у кого-то рак молочной железы при условии, что результаты тестов были положительными, то вы правильно мыслите — четырехчастные таблички прекрасно помогают проверить какие-то данные с помощью байесовского метода.
Ученым следует быть гораздо требовательней к тем доводам, которые идут вразрез со стандартными теориями или моделями, нежели к тем, что согласуются с ними. Зная, что при исследовании нового ретровирусного лекарства были проведены тысячи успешных экспериментов на мышах и обезьянах, мы не сильно удивляемся, когда обнаруживается, что оно хорошо воздействует и на человека, — мы охотно принимаем доказательство исходя из принятых стандартов. Нас может убедить одно-единственное исследование, в котором приняли участие лишь несколько сотен человек. Но если один человек скажет, что сидение в течение трех дней у изножья пирамиды вылечит СПИД — при правильном циркулировании энергии ци в чакрах, — тут нам нужно будет больше доказательств, потому что утверждение выглядит надуманным и ни о чем таком мы раньше не слышали. Мы бы захотели видеть результат, воспроизводимый много раз и в самых разных условиях, а еще лучше — метаанализ.