Книга Спортивный ген, страница 31. Автор книги Давид Эпштейн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Спортивный ген»

Cтраница 31

Так, в результате исследований стало очевидно, что и группа I японских мальчиков, и олимпиец Дэниелса, в отличие от их сверстников, имеют не только высокую базовую аэробную способность, но и высокую способность к обучению.

Кстати, тем самым олимпийцем, которого тестировал Джек Дэниелс, был Джим Райан.

Глава 6
Ребенок с суперспособностью.
Генные изменения и натренированные мышцы

На рубеже нового тысячелетия родился мальчик. В нем не было ничего необычного на первый взгляд (разве что он был несколько крупнее, но в Берлине в больнице Чарити этим никого не удивишь). Однако опытный взгляд медсестры привлекли редкие конвульсии. Через пару часов после того, как он родился, его маленькое тельце начало подергиваться и дрожать. Врачи были очень обеспокоены, ведь эти признаки могут являться показателем эпилепсии. Ребенка сразу же перевели в неонатальное отделение, где он находился под постоянным присмотром врачей. Именно тогда Маркус Шуэлк, детский невролог, заметил, что у ребенка на теле «вздувшиеся» вены.

У новорожденного были слегка выпуклые бицепсы, как если бы в утробе матери он ходил в тренажерный зал. Его тело было мускулистым, а кожа на квадрицепсах была натянута. «Мягкий, как попка у младенца?» Про этого ребенка такое сказать было невозможно. У него были очень крепкие ягодицы. Ультразвуковое исследование показало, что мальчик был самым мускулистым из всех детей, которых только видели доктора, а жира на его теле практически не было.

Во всем остальном ребенок не отличался от остальных детей. Функционирование сердца и все другие показатели были в норме. И после двух месяцев исследований испуг врачей пошел на убыль. У них родилось предположение, что «Загадочная история Бенджамина Баттона» воплотилась в этом ребенке. А значит, со временем он начнет терять свои физические способности и его тело нормализуется. Но этого не произошло. В возрасте четырех лет он мог спокойно поднимать 3-кг гантели на вытянутых руках.

Как оказалось, в его семье подобная сила редкостью не была. И мать мальчика, и ее брат, и отец – все имели невероятную силу. Но ее дед был самым сильным из них. Ошеломив всех, он самостоятельно голыми руками вытащил из кузова грузовика 150-кг тумбу.

Закутанный в одежду с головы до ног, мальчик ничем не выделялся. Так что, увидев его, вы бы даже не заподозрили, что под одеждой этого малыша скрываются мышцы, в два раза превосходящие по объему мышечную массу его сверстников. Гипертрофия мышц. Доктору Шуэлку этот случай казался до боли знакомым.


В начале 1990-х Си Джин Ли, генетик университета Джона Хопкинса в Балтиморе, начал проводить свои исследования в области мышечной системы. Его интересовала не столько сформированная мышечная ткань, сколько процесс ее формирования. Целью его исследования было обнаружить методы лечения атрофии мышц, таких как мышечная дистрофия. Ли вместе со своими коллегами изучал группу белков, известных как трансформирующий фактор роста-b. Они создали гены, кодирующие эту группу белков, а затем, как дети, получившие новую игрушку, пытались определить, на что же влияет каждый полученный ген.

Ученые дали генам произвольное название: фактор роста и дифференцировки (ФРД) 1–15 и вживили эти гены подопытным грызунам. Так они могли определить функцию каждого гена. У мышей с блокированным ФРД-1 развилось неправильное расположение внутренних органов, из-за чего они долго не прожили. У мышей с блокированным ФРД-11 образовалось 36 ребер. Они тоже быстро погибли. Так, выжили только мыши с блокированным ФРД-8. Они стали своего рода «уродами» среди грызунов, мышами нового поколения. У них развилась гипертрофия мышц.

В 1997 году группа Ли назвала ФРД-8 миостатином (myostatin с латин. «myo» означает мышцы, а «statin» – останавливать). Как стало известно, миостатин блокирует развитие мышечной ткани. А при его отсутствии наблюдается взрыв роста мышц. По крайней мере, именно это случилось с лабораторными мышами.

Ли задался вопросом, может ли этот ген оказывать тот же эффект и на развитие других видов. Он связался с Ди Гаррелсом, владельцем ранчо Лэйквью в Стоктоне, штат Миссури, который занимался разведением бельгийской голубой породы коров. Эта порода появилась после Второй мировой войны. Селекционеры Европы в условиях послевоенной экономики стремились вывести породу с большим количеством мышечной ткани в связи с все возраставшим спросом на мясо. Ученые Бельгии скрестили голштино-фризскую молочную породу коров с коренастой шортгорнской породой. И в результате получили обросший мышцами скот. Гипертрофией мышц, если точнее. Бельгийская голубая порода выглядела так, как будто кто-то засунул шары для боулинга под ее кожу, и обладала невероятной силой. Один из быков, отчаянно пытаясь добраться до коров, сорвал стальные ворота загона с петель и откинул их в сторону.

Ли попросил Гаррелса взять кровь скота с гипертрофированными мышцами на анализ. И, как и предполагалось, у бельгийской голубой отсутствовали 11 пар ДНК, а это более 6000 генов с миостатином. Так, развитие мышц прошло без остановки. Другая порода с гипертрофией мышц – пьемонтская – также была подвержена генной мутации, в результате которой была нарушена функциональность миостатина.

Ли отправился на поиски людей с подобными генными изменениями. Первую остановку он сделал в магазине, где до отказа забил свою корзину журналами для бодибилдеров с фотографиями мужчин с выпученными мускулами и раздувшимися венами в крошечных шортах. Ли в шутку назвал их «самыми тощими людьми в мире», и он до сих пор помнит, как покосился на него тогда кассир. Он просмотрел все эти журналы в поисках хоть какого-нибудь намека на необычный случай. Затем Ли разместил объявление о проводимом им исследовании, для которого нужны добровольцы. Ли был завален письмами от желающих с их фотографиями. Отобрав 150 мужчин, Ли взял у них анализы, но никаких мутаций он не обнаружил.

До 2003 года Ли отложил свое исследование в сторону, пока Маркус Шуэлк не опубликовал свои исследования о том самом мальчике, который родился тремя годами ранее. В следующем году Шуэлк, Ли и группа ученых опубликовали совместный труд, в котором подробно описали это явление. СМИ тогда окрестили этого ребенка (чье имя тщательно скрывается) «ребенок с суперспособностью». Этот «суперребенок» был своего рода бельгийской голубой среди людей. Генная мутация вызвала блокировку миостатина в его крови, так что у него было два мутированных миостатина. Еще больший интерес вызывает тот факт, что у его матери обнаружили один типичный ген миостатина и один мутированный ген миостатина. Так, ее мышечная масса была больше, чем у среднего человека, но меньше, чем у ее сына. Она была единственным взрослым человеком с задокументированной мутацией миостатина и при этом профессиональным спринтером.


Гипертрофия мышц, безусловно, может показаться подарком природы, но миостатин существует не просто так. Эволюция – дама консервативная. Так, один и тот же ген выполняет одну и ту же функцию у мышей, крыс, свиней, рыб, цыплят, коров, овец и людей. Скорее всего, потому, что мышцы – удовольствие не из дешевых. Мышцы требуют калорий и, в частности, белка, чтобы поддерживать их. Люди с сильно развитой мышечной тканью имеют массу проблем, ведь их органам постоянно не хватает белка. Но это меньшая из проблем.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация