Книга Краткая история почти всего на свете, страница 47. Автор книги Билл Брайсон

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Краткая история почти всего на свете»

Cтраница 47

Одним из сотрудников Резерфорда был мягкий обходительный датчанин Нильс Бор. В 1913 году Бору, бившемуся над строением атома, пришла в голову идея, настолько взволновавшая его, что он отложил медовый месяц и сел за написание статьи, которая стала поворотным пунктом в науке.

Поскольку физики не могли видеть столь малые объекты, как атомы, им приходилось делать выводы об их строении, наблюдая, как они реагируют на различные воздействия. Так, например, Резерфорд обстреливал фольгу альфа-частицами. Неудивительно, что иногда результаты таких экспериментов вызывали новые вопросы. Одной из загадок долгое время были особенности спектра водорода. Вид этого спектра говорил о том, что атомы водорода излучают энергию на определенных длинах волн и не проявляются на других. Будто кто-то находящийся под наблюдением обнаруживается то в одном, то в другом месте, но ни разу не был замечен в движении между ними. Никто не мог понять, почему так происходит.

Ломая голову над этой проблемой, Бор неожиданно наткнулся на решение и поспешил изложить его в своей знаменитой статье, озаглавленной «О строении атомов и молекул». В ней объяснялось, как электроны могут удержаться от падения на ядро: для этого выдвигалось предположение, что они могут занимать только отдельные, строго определенные орбиты. Согласно этой новой теории электрон перемещается с орбиты на орбиту, исчезая на одной и мгновенно возникая на другой, не появляясь в пространстве между ними. Эта идея – знаменитый «квантовый скачок» – конечно, была чрезвычайно странной, но она была слишком красивой, чтобы оказаться ошибочной. «Квантовый скачок» не только удерживал электроны от катастрофического спирального падения на ядро, но также объяснял странности с длинами волн в спектре водорода. Электроны появлялись только на определенных орбитах, потому что только на них могли существовать. Это была блестящая проницательная догадка, и она принесла Бору Нобелевскую премию в 1922 году, через год после Эйнштейна.

Тем временем неутомимый Резерфорд, вернувшись в Кембридж и сменив Дж. Дж. Томсона на посту руководителя Кавендишской лаборатории, предложил модель, объяснявшую, почему не взрываются ядра. Он понял, что положительные заряды протонов должны компенсироваться какими-то нейтрализующими частицами, которые он назвал нейтронами. Идея была простой и привлекательной, но труднодоказуемой. Коллега Резерфорда Джеймс Чэдвик целых одиннадцать лет усиленно охотился за нейтронами, пока наконец в 1932 году не добился успеха. Он тоже получил Нобелевскую премию – в 1935 году. Как отмечают Бурс с соавторами [159] в своей истории данного вопроса, задержка с открытием, возможно, оказалась к лучшему, поскольку овладение нейтроном имело существенное значение для разработки атомной бомбы. (Ввиду того что нейтроны не несут никакого заряда, они не отторгаются электрическими полями в сердцевине атома и тем самым могут, подобно крошечным торпедам, выстреливаться в атомное ядро, давая начало разрушительному процессу, известному как деление.) Случись, что нейтрон был бы выделен в 1920-х годах, замечают они, «весьма вероятно, что атомная бомба была бы впервые разработана в Европе и, несомненно, немцами».

Как бы то ни было, европейцы изо всех сил старались понять странное поведение электрона. Главная проблема, с которой они сталкивались, заключалась в том, что электрон вел себя то как частица, то как волна. Эта невероятная двойственность доводила физиков почти до помешательства. Все следующее десятилетие ученые по всей Европе лихорадочно выдвигали конкурирующие гипотезы. Во Франции принц Луи-Виктор де Бройль, потомок герцогского рода, пришел к заключению, что отдельные аномалии в поведении электронов исчезают, если рассматривать их как волны. Это наблюдение вызвало живой интерес австрийца Эрвина Шредингера, который весьма изощренным способом построил удобную для использования систему, названную волновой механикой. Почти одновременно немецкий физик Вернер Гейзенберг выступил с конкурирующей теорией, названной матричной механикой. Она была до того сложна математически, что вряд ли кто-нибудь в полной мере понимал ее, включая самого Гейзенберга. («Я даже не знаю, что такое матрица», – однажды в отчаянии признался он приятелю.) Но, похоже, что он справился с некоторыми проблемами, которые не удалось разрешить Шредингеру.

В результате у физиков появились две теории, основанные на противоречащих друг другу посылках, но дающие одинаковые результаты. Это была неприемлемая ситуация.

Наконец, в 1926 году Гейзенберг нашел знаменитый компромисс, создав новую дисциплину, которая получила известность под названием квантовой механики [160]. В ее основе лежал сформулированный Гейзенбергом принцип неопределенности, устанавливающий, что электрон является частицей, но такой, что ее можно описывать в терминах волн. Неопределенность, на которой построена эта теория, состоит в том, что мы можем знать, как движется электрон в пространстве, или знать, где он находится в данный момент, но не можем знать то и другое вместе. Любая попытка определить одно неминуемо нарушает определение другого. Это не вопрос применения более точной аппаратуры, а неотъемлемое свойство Вселенной.

На практике это означает, что нельзя предсказать, где будет находиться электрон в каждый конкретный момент. Можно только рассчитать вероятность его нахождения там. В известном смысле, как это выразил Деннис Овербай, электрон не существует, пока его не замечают. Или чуть иначе: пока его не замечают, следует считать, что электрон находится «одновременно везде и нигде».

Если вас это смущает, можете найти утешение в том, что это смущало и многих физиков. Овербай пишет: «Бор однажды заметил, что тот, кто, впервые услышав о квантовой теории, не возмутился, просто не понял, о чем шла речь». Когда Гейзенберга спросили, как можно представить себе атом, он ответил: «Не пытайтесь».

Так что атом оказался совсем не похожим на то, каким его представляло большинство. Электрон не летает вокруг ядра, как планета вокруг Солнца, а скорее имеет бесформенные очертания наподобие облака. «Скорлупа» атома представляет собой не какую-то твердую блестящую оболочку, как порой подталкивают думать некоторые иллюстрации, а просто наиболее удаленные от центра края этих неясно очерченных электронных облаков. Само облако – это, по существу, всего лишь зона статистической вероятности, обозначающая пространство, за пределы которого электрон очень редко выходит. Так что атом, если бы его можно было увидеть, скорее похож на очень нечетко очерченный теннисный мяч, чем на жесткий металлический шар (впрочем, он не очень похож ни на то, ни на другое и вообще не похож ни на что из когда-либо виденного вами; все-таки мы имеем дело с миром, очень сильно отличающимся от того, что мы наблюдаем вокруг себя).

Казалось, удивительному нет конца. Как выразился Джеймс Трефил [161], ученые впервые столкнулись с «областью Вселенной, которую наши мозги просто не приспособлены понимать». Или, как сказал Фейнман, «в поведении малых тел нет ничего общего с поведением больших». Копнув глубже, физики поняли, что открыли мир, в котором не только электроны могут перескакивать с орбиты на орбиту, не перемещаясь через разделяющее их пространство, но также материя может возникать из ничего «при условии, – по словам Алана Лайтмана [162] из Массачусетского технологического института, – что она достаточно быстро исчезает».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация