Книга Нанонауки. Невидимая революция, страница 19. Автор книги Кристиан Жоаким, Лоранс Плевер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Нанонауки. Невидимая революция»

Cтраница 19

Следующий нанофизический эксперимент имел дело с электрическим подключением одиночной молекулы. В 1987 году мы с Ари Авирамом уже ставили опыт с подключением молекулы-выключателя. Молекулы были рассеяны на металлической поверхности, в которой был установлен первый контактный электрод (то есть поверхность и была одним из электродов). Экспериментатор подводил иглу туннельного микроскопа к какой-нибудь из этих молекул — игла служила вторым электродом. Надо было медленно опустить иглу на молекулу, чтобы установить с ней электрический контакт. Но откуда мы знаем, когда именно — в какой момент — устанавливается контакт между иглой и молекулой?

Чем ближе игла опускается к молекуле, тем сильнее она ее деформирует. При этом ток через молекулу тем больше, чем сильнее она изуродована. Однако если игла опустится совсем низко, то она просто раздавит молекулу. Так что надо искать тонкий компромисс, добиваясь возможно большего значения тока при возможно меньшем искажении формы молекулы. Чтобы лучше подбирать высоту иглы, чего в середине 1990-х мы не умели, Джим Гимжевски и я решили попробовать вновь подключить иглу к молекуле. На этот раз мы взяли молекулу фуллерена (в ней 60 атомов углерода, а по виду она похожа на футбольный мяч). Эксперимент состоял в следующем. Мы поместили несколько молекул фуллерена на поверхности кристалла золота и стали опускать иглу на одну из этих молекул, измеряя ток в цепи, состоящей из поверхности золотого кристалла, молекулы фуллерена и иглы. Нам хотелось понять, как зависит ток от расстояния между острием иглы и молекулой. Поначалу сила тока росла плавно, но затем мы отметили резкий скачок — когда расстояние между иглой и поверхностью уменьшилось до 1,1 нм. Слегка меняя положение иглы, чтобы как можно точнее определить переломную точку, мы ее нашли, при этом контакт иглы и молекулы фуллерена установился, а форма ее была не искажена; впервые мы установили электрический контакт с одной-единственной молекулой!

Подключив таким образом молекулу, мы замерили ее электрическое сопротивление. Это «электрическое сопротивление» не имело отношения к электродам, то есть поверхности кристалла и игле, но существовало внутри молекулы. Годом спустя Дон Эйглер таким же образом замерил электрическое сопротивление самого тонкого проводка в мире — проводника из двух атомов ксенона. Так начинались эксперименты с электрическими свойствами считаных атомов или одной-единственной молекулы.

МЕХАНИКА МОЛЕКУЛЫ

Теперь вспомним о первых механических опытах с одиночной молекулой. Мы уже рассказывали про иглу туннельного микроскопа, толкавшую одну молекулу. В 1998 году началась — и совершенно случайно! — эра «наномеханики». Но для начала лучше вспомнить о том, что случилось немножко раньше.

На исходе 1960-х годов американский биохимик Пол Бойер предположил, что белковые молекулы могут менять форму — из-за вращения какой-то из их частей. Иначе говоря, «в мире внизу» макромолекула способна вывернуться наизнанку. Нельзя ли как-то приспособить это явление к механике? В 1997 году японец Кадзухико Киносита с сотрудниками смогли увидеть это вращение на экране, сумев прикрепить флуоресцирующий маркер к поворачивающейся части молекулы белка. Предположение Бойера и наблюдение Киноситы макромолекул, состоящих из тысяч атомов, подсказали вопрос: а нельзя ли пронаблюдать подобные же вращательные движения у одиночной маленькой молекулы?

В это самое время мы с Джимом Гимжевски изучали, как сравнительно плоские молекулы декациклена собираются в «кучки» на поверхности кристалла меди. Молекула декациклена состоит из центрального бензольного ядра (это такой плоский шестиугольник), к которому прицеплено шесть «лапок». Мы собирались начать исследования с дальнейшего изучения условий, связанных с получением и формированием изображения одиночной молекулы, чтобы выяснить, как оно зависит от расстояния от иглы микроскопа до тела молекулы, лежащей на некоторой поверхности. Ножки декациклена много короче лапок нашей первой молекулы — порфирина. В своем опыте мы старательно испаряли молекулы с поверхности, чтобы оставить только плотный тонкий слой из упорядоченно расположенных молекул. Но молекулы отказывались становиться в четкий строй: то здесь, то там замечались изъяны. В одном месте, например, молекулы не было, а в другом она хоть и была, но сильно выбивалась из строя. И пробелы в молекулярных рядах порой еще и сливались в большие пятна, сравнимые по величине с размером одиночной молекулы. А что будет с молекулой в этом самом слое, если она окажется на краю такой «щели» или, точнее, «ямы»? Наверное, она иногда будет смещаться — словно бы напрашиваясь на исследование.

Удача нам улыбнулась: обследовав несколько таких пробелов, мы заметили одну молекулу, сильно отошедшую от первоначального положения, — по сравнению с другими молекулами это бросалось в глаза. И она поворачивалась — как малюсенькая юла диаметром 1,2 нм. Для вращения нужна энергия — скорее всего, хватало тепловой энергии поверхности, температура которой равнялась комнатной. В этом опыте мы впервые получили изображение вращения одиночной молекулы. Восторг скоро прошел, и мы принялись терпеливо выяснять параметры вращения и определять факторы, влияющие на этот процесс.

После нескольких недель экспериментов Джим Гимжевски и его товарищ Рето Шлиттлер показали, что можно по своей воле и раскручивать молекулу, и останавливать ее вращение, — манипулируя иглой микроскопа, конечно. И мы даже подобрали объяснение физики этого явления. В сущности, такая молекула-колесико ведет себя как шестеренка в коробке передач. Если молекула — на самом краю щели (или ямы), то четыре из ее шести лапок сцеплены с такими же лапками соседних молекул, и наша молекула крутиться не станет. Но, если ее подтолкнуть, сдвинув на 0,25 нм, то она окажется посередине щели, и соседок у нее не останется. Значит, четыре прежде занятые лапки теперь освободятся и она повернется сама — надо только, чтобы было куда повернуться. Но если слишком просторно, на вращение может наложиться процесс боковой диффузии — и он, скорее всего, затормозит молекулу.

Чтобы разобраться в режиме вращения такой молекулы, мы регистрировали вариации туннельного тока, устанавливая иглу в том месте, через которое проходит одна из лапок вращающейся молекулы. И мы заметили, что импульсы тока, отображаемые на экране осциллографа, пляшут в том же ритме, в котором крутится наша молекула. К несчастью, при комнатной температуре она очень уж разгонялась, и толком разобрать, что с нею творится, было почти невозможно. Вместе с коллегами из Берлинского университета мы синтезировали другую молекулу, на этот раз с шестью длинными зубчиками, — получилась настоящая молекула-шестеренка величиной в 1,2 нм. Пометив химически один зуб шестерни и слегка изменив ее строение, мы стали наблюдать за вращением молекулы: она поворачивалась рывками, шаг за шагом, всякий раз описывая дугу в 60° и продвигаясь вдоль своего рода кремальеры — длинной рейки с зубчиками, тоже состоящей из молекул, только других.

В 2001 году мы с Франческой Мореско и Герхардом Мейером повторили эксперимент с фталоцианином — молекулой с четырьмя лапками, которая, если ее подталкивали иглой, смещалась — и фиксировали в режиме реального времени колебания тока в цепи между иглой и поверхностью. Теперь на экране осциллографа размах колебаний был больше. Мы легко определили период этих колебаний — он оказался равен 0,25 нм, а означало это то, что молекула передвигается по медной поверхности от площадки к площадке. Большое колебание не было сплошным: внутри большого импульса заметны были флуктуации меньшей амплитуды. Эти меньшие колебания удалось увязать с попеременным движением «передних» лапок — тех, что были направлены в сторону перемещения молекулы («задние» лапки удерживала игла)! Если молекулу толкнуть, она сдвигается на манер насекомого, ползущего по гладкой поверхности: сначала деформируется одна из ее передних лапок, потом — вторая. Эти деформации слегка искажают электронную структуру молекулы, а потому ток, текущий в цепи, образованной поверхностью, молекулой и иглой, меняется в том же ритме, в котором молекула «перебирает передними лапками». Чтобы занять соседнюю площадку, молекула сначала вытягивает одну лапку, потом тянет за ней другую, а не деформирует обе передние лапки сразу — иначе говоря, молекула как бы ходит.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация