Черные мини-дыры были снова предложены Стивеном Хокингом, который доказал, что черные дыры должны слабо испарять и испускать энергию. В течение многих эпох черная дыра испустила бы такое огромное количество энергии, что постепенно бы сжалась и в конце концов превратилась бы в субатомную частицу. Сегодня струнная теория заново представляет концепцию черных мини-дыр. Вспомним о том, что черные дыры образуются, когда большое количество вещества сжимается до радиуса Шварцшильда. Масса и энергия могут быть конвертированы друг в друга, а это значит, что черные дыры можно также создать путем сжатия энергии. Ученые задаются вопросом о том, сможет ли Большой адронный коллайдер создать черные мини-дыры среди остатков, образующихся при столкновении двух протонов при энергии 14 трлн эВ
[33]. Такие черные дыры были бы очень малы и имели бы массу, возможно, лишь в тысячу раз больше электрона
[34], а жизнь их измерялась бы периодом лишь в 10–23 с. Но они были бы отчетливо видны среди следов субатомных частиц, созданных Большим адронным коллайдером.
Физики также надеются на то, что космические лучи из открытого космоса могут содержать в себе черные мини-дыры. Техника в Обсерватории имени Пьера Оже в Аргентине, предназначенная для изучения космических лучей, настолько чувствительна, что может уловить некоторые из самых больших вспышек космических лучей в истории науки. Ученые возлагают надежды на то, что черные мини-дыры могут быть обнаружены в естественном виде среди космических лучей, которые попадают в верхние слои земной атмосферы, порождая тем самым широкие атмосферные ливни. Один из подсчетов показывает, что в год детектор космических лучей смог бы уловить до десяти ливней космических лучей, вызванных такой черной мини-дырой
[35].
Обнаружение черной мини-дыры при помощи Большого адронного коллайдера в Швейцарии либо детектора космических лучей в Обсерватории имени Пьера Оже в Аргентине, возможно, уже в этом десятилетии представило бы веское доказательство в пользу существования параллельных вселенных. Хотя это доказательство не окончательно подтвердило бы правильность струнной теории, оно бы убедило все физическое сообщество в том, что струнная теория согласуется с экспериментальными результатами и что ее разработка продвигается в нужном направлении.
Черные дыры и информационный парадокс
Струнная теория может также пролить свет на некоторые из глубочайших парадоксов физики черных дыр, таких как информационный парадокс. Как вы помните, черные дыры не абсолютно черные, они испускают малые количества излучения посредством туннелирования. Согласно квантовой теории, существует небольшая вероятность того, что излучение может вырваться из тисков гравитации черной дыры. Это приводит к медленной утечке излучения из черной дыры. Такое излучение называется излучением Хокинга.
Этому излучению, в свою очередь, присуща некоторая температура (которая пропорциональна площади поверхности горизонта событий черной дыры). Хокинг дал общий вывод этого уравнения, который не отличался доскональной точностью. Однако более тщательный вывод потребовал бы привлечения всей мощи статистической механики (основанной на подсчете квантовых состояний черной дыры). Обычно расчеты в статистической механике осуществляются как подсчет количества состояний, в которых может находиться атом или молекула. Но как можно подсчитать квантовые состояния черной дыры? Согласно теории Эйнштейна, черные дыры абсолютно гладкие, а потому посчитать их квантовые состояния представляется довольно проблематичным.
Ученые, занимающиеся теорией струн, изо всех сил стремились закрыть этот пробел, поэтому Эндрю Строминджер и Кумрун Вафа из Гарварда решили проанализировать черную дыру при помощи М-теории. Поскольку с самой черной дырой работать было слишком сложно, они избрали другой подход и задали умный вопрос: что дуально по отношению к черной дыре? (Мы помним, что электрон дуален по отношению к магнитному монополю, такому как единичный северный полюс. Отсюда путем изучения электрона в слабом электрическом поле, что достаточно просто, мы можем проанализировать гораздо более сложный эксперимент: монополь, помещенный в очень большое магнитное поле.) Итак, ученые надеялись, что дуальный по отношению к черной дыре объект окажется более легким в исследовании, хотя в конечном счете они получат тот же самый результат. При помощи ряда математических процедур Строминджеру и Вафе удалось показать, что черная дыра дуальна по отношению к скоплению одно-бран и пяти-бран. Это принесло ученым огромное облегчение, поскольку квантовые состояния этих бран были известны. Когда Строминджер и Вафа посчитали количество квантовых состояний, они обнаружили, что оно в точности соответствовало результату, приведенному Хокингом.
Это стало приятной новостью. Струнная теория, часто высмеиваемая за то, что она не связана с реальным миром, давала, возможно, самое изящное решение термодинамики черной дыры.
Теперь ученые, работающие с теорией струн, пытаются подступиться к более сложной проблеме в физике черных дыр – информационному парадоксу. Хокинг доказал, что если бросить что-либо в черную дыру, то информация, заключенная в этом объекте, будет утеряна безвозвратно и навсегда. (Так можно было бы совершить идеальное преступление. Преступник мог бы воспользоваться черной дырой, чтобы уничтожить все обличающие его улики.) Единственными параметрами, которые мы можем измерить для черной дыры на расстоянии, являются ее масса, спин и заряд. Не имеет значения, что бросить в черную дыру, – все равно вся информация, содержащаяся в объекте, будет утеряна. (Это соответствует утверждению о том, что «у черных дыр нет волос», что они «лысые», то есть потеряли всю информацию – все «волосы», за исключением этих трех параметров.)
Потеря информации из нашей Вселенной кажется неизбежным следствием теории Эйнштейна, но это противоречит принципам квантовой механики, которые гласят, что в действительности информацию потерять нельзя. Эта информация должна парить где-то в нашей Вселенной, даже если изначально содержащий ее объект бросили в пасть черной дыры.
Хокинг писал: «Большинству физиков хотелось бы верить, что информация не теряется, поскольку тогда мир стал бы безопасен и предсказуем. Но я считаю, что если серьезно подходить к общей теории относительности Эйнштейна, то необходимо принять во внимание возможность того, что пространство-время запутывается в узлы и вся информация теряется в образующихся складках. Выяснение того факта, теряется в действительности информация или нет, является одним из основных вопросов теоретической физики на сегодняшний день»
{144}.