Книга Игра случая. Математика и мифология совпадения, страница 16. Автор книги Джозеф Мазур

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Игра случая. Математика и мифология совпадения»

Cтраница 16

Давайте рассмотрим это с точки зрения математики. Предположим, что шарик ударяется о четыре ряда стержней на пути вниз. Шанс того, что шарик пойдет после каждого удара вправо или влево, – 1 к 1, в результате чего шарики формируют под стержнями кривую в форме колокола. Подсчет числа вариантов падения шариков это доказывает. Предположим, что ход снижения брошенного шарика записывается буквами L и R, означающими отскок влево и вправо соответственно. Тогда у нас будут следующие возможные исходы:


Игра случая. Математика и мифология совпадения

Вариантов с разными буквами больше, чем только с одной буквой, и, поскольку шансы того, что шарик пойдет влево или вправо, равны, есть тенденция к тому, что шарики будут чаще падать в сторону центра под верхним стержнем. Причина в том, что в результате серий, скажем 12 выборов L и R (как показано на рис. 5.3), существует больше серий с шестью L и шестью R, чем любого другого числа L и R.

В результате каждого столкновения со стержнями считаем падение шарика влево как –1, а вправо – как +1. После столкновения с 12 рядами стержней шарик оказывается в одной из 12 ячеек в нижней части доски.

Так, например, шарик в крайней левой ячейке на рис. 5.3 получает совокупное значение –12. Конечное положение каждого шарика представляет отдельное совокупное значение. Шарики демонстрируют тенденцию к тому, чтобы отклоняться в центр. Однако, хотя достаточно много шариков падают в два центральных слота, большее их число оказывается в остальных слотах.


Игра случая. Математика и мифология совпадения

На рис. 5.3 набор шариков представляет конечное совокупное значение 140 испытаний: 31 шарик упал в пять слотов слева, 55 – в пять слотов справа и 54 – в два средних слота. Верно, что конечное положение каждого отдельного шарика ничего не говорит об истории его путешествия. Почти 60 % шариков упали вне двух центральных слотов. В общем, шарик, упавший на несколько рядов вниз и находящийся слева, может закончить свой путь справа, но так же верно и то, что, чем дальше он отклоняется влево, тем меньше у него шансов вернуться вправо.

Сегодня теория вероятностей развивается в двух направлениях: эмпирическом и абстрактном. Например, эмпирическим подходом будет использовать большие выборки, чтобы оценить вероятность, тогда как абстрактным подходом – задействовать научный принцип, чтобы зафиксировать вероятность через известные факты, такие как аргумент симметрии или физическая теория. Нам известна вероятность того, что идеальные игральные кости выпадут на 1 в силу кубической геометрии самих костей. Но вероятность выпадения 1 на обычных игральных костях может быть найдена посредством большого числа испытаний и записи числа испытаний, когда выпадает 1; эта вероятность может оказаться немного больше или меньше 1/6 – все-таки это реальные несовершенные кости.

Многое зависит от самой кости. Кости, которые входят в наборы для настольных игр, выполнены довольно грубо. Ятзи – игра в кости, появившаяся в 1950-е гг. В игре используется 5 кубиков. Если при броске все 5 костей дают одно и то же число, такая комбинация называется ятзи. Шансы выбросить ятзи – 1295 к 1. {44} Вы могли бы решить: чтобы выбросить такую комбинацию, потребуется 1296 попыток. Но если достаточно большое число людей по всему миру уделят игре хотя бы немного времени, то такая комбинация может запросто выпасть с первой попытки. Именно так думал Брэди Харан, когда попросил сотни подписчиков своего сайта попробовать выбросить ятзи и записать бросок на видео. Как вы могли догадаться, некоторые выбросили ятзи после нескольких первых попыток, а многим это удалось после нескольких сотен бросков {45}.

В XVIII в., чтобы найти вероятность события, вы бы просто посчитали отдельные случаи: вы взяли бы отношение числа желаемых исходов к числу всех возможных случаев. «Честные» кости могут выпасть одной из возможных сторон, поэтому вероятность p того, что кость выпадает конкретной стороной, – 1/6. Но Бернулли задал вопрос иначе. Он хотел его расширить, чтобы включить проблемы, касающиеся болезней и погоды, с надеждой охватить другие научные вопросы {46}.

Теорема Бернулли

Математиков часто приводит в восхищение величие и красота абстрактного принципа. Их увлекает красота, возникающая, когда теорию можно изящно применить к природному миру. Швейцарский математик Якоб Бернулли торжествовал, когда ему удалось доказать слабый закон больших чисел после знакомства с «Книгой об азартных играх» Кардано. Этот закон поистине удивителен, ведь он говорит нам, что, пусть природа и непредсказуема и содержит неизмеримое число компонентов и переменных, у нас все же имеются поразительно искусные способы измерить ее тайны {47}. Он дает нам удивительную возможность разобраться с неопределенностью.

Когда Якоб Бернулли умер в 1705 г., он оставил кипы неоконченных и неопубликованных рукописей своему племяннику Николаю Бернулли. В течение следующих восьми лет Николай разбирался в бумагах своего дяди и наконец опубликовал «Искусство предположений» (Ars Conjectandi) – революционную работу, за которой и сейчас признается новаторство в области описания важнейших понятий теории относительности. В посмертно опубликованной книге в 1713 г. применен уникальный подход, реализованный в виде примера, где говорится об урне, наполненной черными и белыми жетонами, а нам необходимо найти соотношение черных и белых, даже если мы не знаем, что в урне содержится 3000 белых жетонов и 2000 черных. Надо понимать, что существует математическая вероятность, представленная в виде отношения числа белых жетонов к числу черных жетонов. Но числа эти нам неизвестны. Как в таком случае узнать математическую вероятность? Вот план Бернулли: вы вслепую выбираете один жетон, записываете его цвет, кладете его обратно и трясете урну. Если вы повторите это действие, вслепую выбирая жетоны один за другим достаточно долгое время, то по мере увеличения числа попыток становитесь все ближе в этой таинственной математической вероятности. Предположим, например, что после 200 слепых выборок вы записали: 120 белых и 80 черных. Тогда отношение числа белых к черным составит 3 к 2. Далее, вы можете предположить, что вероятность выбрать белый – 120/200, или 3/5.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация