Книга Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса, страница 64. Автор книги Марио Ливио

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Cтраница 64

Но и это еще не все. Целый ряд недавних спекулятивных теорий, целью которых было объяснить, как так вышло, что наша Вселенная расширяется с ускорением, предположили, что законы гравитации на очень маленьких расстояниях могут вести себя необычно. Вспомним, что по закону всемирного тяготения Ньютона притяжение уменьшается обратно пропорционально квадрату расстояния. То есть если удвоить расстояние между двумя массами, то сила тяготения, действующая на каждую массу, ослабеет в четыре раза. Новые сценарии предсказывали отклонения от этого поведения на расстояниях меньше миллиметра. Эрик Адельбергер, Дэниел Капнер и их коллеги из Университета штата Вашингтон в Сиэтле провели серию остроумных экспериментов, чтобы проверить предсказанные такими сценариями отклонения в зависимости от расстояния (Kapner et al. 2007). Самые свежие результаты, обнародованные в январе 2007 года, показали, что закон обратных квадратов действует даже на расстоянии пятидесяти шести тысячных миллиметра! Выходит, математический закон, сформулированный более трехсот лет назад на основе весьма скудных наблюдательных данных, оказался не просто феноменально точным, но и действует на расстояниях, на которых до самого недавнего времени нельзя было даже проводить подобные измерения!

Остался один важный вопрос, который Ньютон вовсе оставил без ответа: как же действует гравитация? Каким образом Земля, находящаяся от Луны на расстоянии почти 400 000 километров, влияет на движение Луны?

Ньютон об этом недостатке своей теории прекрасно знал и открыто признавал в «Началах».

До сих пор я изъяснил небесные явления и приливы наших морей на основании силы тяготения, но я не указывал причины самого тяготения. Эта сила происходит от некоторой причины, которая проникает до центра Солнца и планет без уменьшения своей способности и которая действует… повсюду на огромные расстояния, убывая пропорционально квадратам расстояний… Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю (пер. А. Крылова).

Решить эту задачу и восполнить пробел, оставленный Ньютоном, удалось Альберту Эйнштейну (1879–1955). В 1907 году у Эйнштейна появилась весьма серьезная причина интересоваться гравитацией – оказалось, что его специальная теория относительности прямо противоречит закону всемирного тяготения Ньютона [153].

Ньютон полагал, что гравитация действует мгновенно, что планеты сразу же чувствуют силу тяготения Солнца, а яблоко – притяжение Земли. С другой стороны, столпом специальной теории относительности Эйнштейна служит утверждение, что никакой предмет, энергия или информация не могут перемещаться быстрее света. Как же может гравитация действовать мгновенно? Как показывает нижеприведенный пример, последствия этого противоречия могли бы привести к полному краху наших самых фундаментальных представлений, в том числе представления о причинно-следственной связи.

Представьте себе, что Солнце внезапно исчезло. Земля, лишившись силы, которая удерживает ее на орбите, согласно Ньютону должна начать движение по прямой, не считая мелких отклонений, вызванных гравитацией прочих планет. Однако обитатели Земли будут видеть Солнце еще около восьми минут, поскольку именно столько нужно свету, чтобы преодолеть дистанцию от Солнца до Земли. Иначе говоря, движение Земли изменится раньше, чем исчезнет Солнце.

Чтобы разрешить это противоречие и одновременно найти подход к вопросу, на который не ответил Ньютон, Эйнштейн окунулся в поиски новой теории гравитации с жаром на грани одержимости. Задача была неподъемная. Любая новая теория должна была не только обладать всеми поразительными достоинствами ньютоновой, но и объяснять, как гравитация устроена и как она действует, причем так, чтобы это не противоречило специальной теории относительности.

После нескольких фальстартов и долгих блужданий по извилистым тропам, которые в конце концов заводили в тупик, Эйнштейн в 1915 году все же достиг своей цели. Многие считают, что его общая теория относительности – одна из самых красивых теорий в истории науки.

Основой потрясающего открытия Эйнштейна стала идея, что гравитация – всего лишь искажение ткани пространства-времени. По Эйнштейну, планеты, словно мячики для гольфа, чей путь определяется горками и впадинками на неровном поле, следуют по искривленным траекториям в искривленном пространстве, которое соответствует гравитации Солнца. Иначе говоря, в отсутствие вещества или других форм энергии пространство-время (единая ткань из трех пространственных измерений и одного временного) было бы плоским. Вещество и энергия искажают пространство-время точно так же, как тяжелый шар для боулинга заставляет батут провисать. В этой криволинейной геометрии планеты описывают самые что ни на есть прямые траектории, и это и есть проявления гравитации. Когда Эйнштейн решал задачу о том, как «устроена» гравитация, то заложил еще и основу для ответа на вопрос, с какой скоростью она распространяется. А вопрос о распространении сводится к определению, с какой скоростью может изменяться кривизна пространства-времени. Это примерно как подсчитывать скорость распространения ряби по воде. Эйнштейн сумел показать, что согласно общей теории относительности гравитация распространяется в точности со скоростью света – и это ликвидировало противоречия между ньютоновой теорией и специальной теорией относительности. Если Солнце исчезнет, орбита Земли начнет меняться восемь минут спустя, тогда же, когда мы пронаблюдаем исчезновение нашего светила.

То, что Эйнштейн сделал краеугольным камнем своей новой теории мироздания искривленное четырехмерное пространство-время, означало, что ему была срочно нужна математическая теория подобных геометрических сущностей. В полном отчаянии он писал своему бывшему соученику, математику Марселю Гроссману (1878–1936): «Математика, наиболее изящные области которой я раньше считал чистейшей роскошью, вызывает у меня величайшее уважение». Гроссман посоветовал Эйнштейну обратиться к неевклидовой геометрии Римана (о ней мы уже говорили в главе 6) – он считал, что именно этот инструмент, геометрия искривленных пространств с произвольным числом измерений, и необходим Эйнштейну. Вот он, ярчайший пример «пассивной» эффективности математики, которую Эйнштейн не замедлил признать: «В сущности, геометрию можно считать самой древней областью физики, – объяснил он. – Без нее я не смог бы сформулировать теорию относительности».

Кроме того, общую теорию относительности удалось проверить с поразительной точностью. Проделать эти измерения было совсем не просто, поскольку относительные величины искривлений пространства-времени, вызванных объектами вроде Солнца, измеряются десятитысячными долями процента. Первоначально измерения ограничивались наблюдениями в пределах Солнечной системы (например, крошечными отклонениями орбиты Меркурия от расчетов, выполненных согласно законам Ньютона), однако в последнее время стали возможны и более экзотические проверки. Среди лучших экспериментальных доказательств – данные наблюдений над астрономическим объектом под названием двойной пульсар.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация