Книга Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса, страница 67. Автор книги Марио Ливио

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Cтраница 67

Пожалуй, крайнюю и самую спекулятивную версию «математики как части физического мира» поддерживает мой коллега-астрофизик Макс Тегмарк из Массачусетского технологического института.

Тегмарк полагает, что «наша Вселенная не просто описывается математикой, она и есть математика (курсив мой. – М. Л.)» (Tegmark 2007 a, b). Свою аргументацию он начинает с утверждения, что существует внешняя физическая реальность, которая не зависит от человека. С этим, пожалуй, не поспоришь. Далее он рассуждает о том, какой могла бы быть природа универсальной теории, описывающей подобную реальность (физики называют ее «теорией всего»). Поскольку физический мир никак не зависит от людей, полагает Тегмарк, его описание должно быть свободно от любой человеческой «нагрузки» (в особенности – от человеческого языка). То есть окончательная теория не может включать в себя понятий вроде «субатомных частиц», «вибрирующих струн», «искривлений пространства-времени» и прочих конструкций, созданных человеческим разумом. На основании этого соображения Тегмарк делает вывод, что единственно возможное описание космоса предполагает исключительно абстрактные понятия и соотношения между ними, а это, как он полагает, и есть рабочее определение математики.

Аргументация Тегмарка в пользу математической реальности, безусловно, очень интересна, и если бы она оказалась верной, это был бы существенный шаг в сторону ответа на вопрос о «непостижимой эффективности» математики. Во Вселенной, которая тождественна математике, едва ли стоит удивляться, что математика идеально соответствует природе. К сожалению, мне не кажется, что доказательства Тегмарка убедительны. Переход от существования внешней реальности, независимой от человека, к выводу, что, по словам Тегмарка, «нужно поверить в так называемую гипотезу математической Вселенной – в то, что наша физическая реальность представляет собой математическую структуру», требует, как мне представляется, некоторой подтасовки. Когда Тегмарк пытается охарактеризовать математику как таковую, то говорит: «Для современного логика математическая структура в этом и заключается – она представляет собой набор абстрактных сущностей, между которыми есть какие-то отношения». Но ведь этот современный логик – человек! Иначе говоря, Тегмарк на самом деле вовсе не доказывает, что наша математика не изобретена людьми, он это попросту предполагает. Более того, французский нейробиолог Жан-Пьер Шанже в ответ на подобное утверждение указал (Changeux and Connes 1995): «Утверждать, будто математические объекты обладают физической реальностью – на том же уровне, что и природные явления, которые мы изучаем в биологии – приводит, по-моему, к досадной эпистемологической проблеме. Как физическое состояние, имеющее место внутри нашего мозга, может отражать другое физическое состояние, внешнее по отношению к нему?»

Большинство прочих попыток поместить математические объекты непосредственно во внешнюю физическую реальность опираются на эффективность математики в описании природы как на доказательство. Тогда получается, что нет никакого другого объяснения для эффективности математики, а это, как я покажу в дальнейшем, не так.

Если математика обитает не в платоновском мире, лишенном пространства и времени, и не в мире физическом, означает ли это, что математика целиком и полностью изобретена человеком? Совсем нет. Более того, в следующем разделе я покажу, что по большей части математика состоит из открытий, а не из изобретений. Однако, прежде чем двинуться дальше, стоит изучить мнения современных специалистов по психологии познания. Зачем? Очень просто: даже если математику целиком открыли, эти открытия все равно делали люди-математики при помощи своего мозга.

В последние годы психология познания достигла потрясающих успехов, поэтому было бы естественно ожидать, что нейробиологи и психологи обратят внимание на математику, в частности на поиски оснований математики в когнитивных способностях человека. Поверхностный обзор выводов, к которым пришло большинство психологов-когнитивистов, поначалу оставляет впечатление, будто перед тобой воплощение афоризма Марка Твена: «Для человека с молотком все на свете – гвозди». Практически все нейрофизиологи и биологи твердо считают, что математика есть человеческое изобретение – разница лишь в том, на какие аспекты познания они делают упор. Однако при ближайшем рассмотрении оказывается, что, хотя интерпретация когнитивных данных далеко не однозначна, нет никаких сомнений, что усилия когнитивистов – это очередной новаторский этап поисков оснований математики. Приведу небольшую, но характерную подборку высказываний психологов-когнитивистов.

Французский нейробиолог Станислас Дехане, который интересуется в основном восприятием чисел и количеств, в своей книге «Чувство числа» («The Number Sense», Dehaene 1997) пришел к выводу, что «таким образом, числовая интуиция глубоко укоренена в нашем мозге». В сущности, эта позиция близка к позиции интуиционистов, которые хотели свести всю математику к интуитивному пониманию натуральных чисел в чистом виде. Дехане утверждает, что открытия в области психологии арифметики подтверждают, что «число принадлежит к “естественным объектам мысли”, врожденным категориям, согласно которым мы оцениваем мир». По результатам исследования племени мундуруку – изолированного сообщества амазонских аборигенов – Дехане и его коллеги в 2006 году обобщили это утверждение и на геометрию (Dehaene et al. 2006): «Спонтанное понимание геометрических понятий и схем этим изолированным человеческим сообществом – свидетельство того, что основные представления о геометрии, как и базовая арифметика, – это универсальная составляющая человеческого разума». С последними выводами были согласны не все когнитивисты (см., например, Holden 2006). В частности, некоторые ученые указывают на то, что успехи представителей мундуруку, участвовавших в геометрическом исследовании, когда им нужно было найти кривую среди прямых, прямоугольник среди квадратов, эллипс среди кругов и так далее, возможно, объясняются не врожденными знаниями в области геометрии, а лишь способностью зрительно выделять «лишний предмет».

Жан-Пьер Шанже в увлекательном диалоге о природе математики с математиком (платоновского толка) Аланом Конном (Changeux and Connes 1995) приводит следующее утверждение.

Причина, по которой математические объекты не имеют ничего общего с вещественным миром… в их генеративном характере, в способности порождать другие объекты. Здесь следует подчеркнуть, что в мозге существует своего рода «вместилище сознания», некое физическое пространство, предназначенное для моделирования и создания новых объектов… в некотором отношении эти новые математические объекты – как живые существа: подобно живым существам, они подобны физическим объектам, способным очень быстро эволюционировать; но в отличие от живых существ – за исключением вирусов – они эволюционируют в нашем мозге.

Наконец, самое категорическое суждение в споре «изобретение или открытие» сделали специалист по когнитивной лингвистике Джордж Лакофф и физиолог Рафаэль Нуньес в своей довольно спорной книге «Откуда взялась математика» (Lakoff and Núñez 2000). Как я уже отмечал в главе 1, они объявили следующее.

Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром [то есть Лакофф и Нуньес утверждают, что математика возникает из некоего «встроенного разума»] … Математика – это система человеческих понятий, которая находит невероятное применение обычным инструментам человеческого познания… Человеческие существа ответственны за создание математики – и мы продолжаем быть ответственными за ее разработку и расширение. У портрета математики человеческое лицо.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация