Эти законы было не так просто принять. Совсем недавно, в 1999 году, на одной физической конференции был проведен опрос о квантовой механике. Из девяноста опрошенных только четверо ответили, что принимают стандартную интерпретацию, вытекающую из постулатов Бора – Планка, а целых пятьдесят отметили галочкой вариант “Ничто из вышеперечисленного, затрудняюсь ответить”. Но квантовая теория работала тогда и работает сейчас: она объясняет и предсказывает явления, для которых нет других объяснений. Классическая физика является детерминистской: если A, то B; пуля, выпущенная в окно, разбивает стекло. В квантовом мире это будет истинно лишь в большинстве случаев. В квантовой физике возможны случаи, когда квантовые частицы, ведя себя не как частицы, а как волны, проходят сквозь силовое поле так, как если бы “пушечное ядро прошло нетронутым сквозь крепостную стену”
[875]– явление, получившее название “туннельный эффект”. Это было продемонстрировано важнейшим экспериментом, проведенным в 1909 году: радиоактивные элементы испускали частицы, на пути которых помещалась тонкая пластина золотой фольги, и лишь очень незначительное их число отражалось от пластины – Резерфорд назвал это явление таким же невероятным, “как если бы вы выстрелили по листу папиросной бумаги пятнадцатидюймовым снарядом, и он бы отразился”
[876]. За следующие сорок лет ученые прошли путь от начального знания о протонах и нейтронах, составляющих атомное ядро, до понимания основ термоядерного синтеза, на котором работает Солнце. Этот процесс может объяснить только квантовая физика, в рамках классический физики синтез атомных ядер невозможен, потому что все ядра несут положительный заряд и, соответственно, отталкиваются друг от друга. Как сказал один крупный физик, “согласно классической физике две частицы с одинаковым зарядом будут отталкивать друг друга, как если бы они чувствовали друг у друга плохой запах изо рта”
[877]. Классическая физика отрицает возможность того, что два протона внутри звезды могут достичь такой скорости, чтобы, прорвав электромагнитные поля друг друга, слиться в единое ядро. Но туннельный эффект позволяет протонам преодолевать барьер электромагнитного отталкивания. В условиях высокой температуры и плотности – результат гравитации солнечной массы – протоны преодолевают обычные силы отталкивания и сливаются, образуя стабильные ядра гелия, а избыток массы переходит в излучаемую энергию. И вот перед нами вовсю сияет Солнце – живое доказательство несовершенства классической физики.
После того как квантовая теория получила широкое признание, было открыто так много различных частиц, что физикам теперь приходится заглядывать в специальную “Памятку о свойствах квантовых частиц” (Particle Properties Data Handbook), а обычные люди развлекаются тем, что носят футболки со смешными надписями наподобие знаменитой Protons have mass? I didn’t even know they were Catholic”
[878]. Была составлена таблица из шестнадцати элементарных частиц, двенадцать из которых относились к материи (и назывались фермионами), а четыре (бозоны) были носителями взаимодействий между частицами. Фермионы, эти базовые кирпичики материи, делятся на лептоны (от греч. λεπτός – легкий), или кварки
[879].
Кварки никогда не встречаются изолированно, только группами по три (барионы) или по два (мезоны); вообще кварки в связанном состоянии относятся к группе адронов. Более сложные объекты – протоны, нейтроны, атомы, молекулы, здания и люди – в основном состоят из фермионов. “Если бы я мог запомнить названия всех этих частиц, я бы стал ботаником”, – жаловался Энрико Ферми, даром что самая большая группа частиц носит его имя. К фермионам также относится частица нейтрино, которая известна крайне слабым взаимодействием с остальными частицами, что делает ее очень сложной для обнаружения – триллионы нейтрино ежесекудно проносится сквозь наши тела. Известный исследователь нейтрино Джон Бэколл называл такие цифры: “Солнечное нейтрино, проходящее Землю насквозь, имеет менее одного шанса на тысячу миллиардов наткнуться на земное вещество… Около сотни миллиардов солнечных нейтрино проходят сквозь ноготь вашего большого пальца каждую секунду, не привлекая ни малейшего вашего внимания”
[880]. Джон Апдайк сочинил:
Частички нейтрино,
Капризные дети,
Чему вы подвластны,
Чего вы хотите?
Заряда не нужно,
Не нужно вам массы,
Сквозь нашу планету
Последними обнаруженными квантовыми частицами стали W– и Z-бозоны в 1983 году, затем t-кварк (он же топ-кварк и истинный кварк) в 1995-м и тау-нейтрино в 2000-м, так что субъядерный мир все еще пребывает в процессе открытия
[882].