Книга Интерстеллар: наука за кадром, страница 17. Автор книги Кип С. Торн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Интерстеллар: наука за кадром»

Cтраница 17

В моем тогдашнем исследовании я уделил особое внимание газовому диску (он напоминает кольца Сатурна), который вращается в одном направлении с черной дырой. Этот диск называется аккреционным (см. главу 9). Силы трения в диске вынуждают газ постепенно, по спирали, переходить в черную дыру, увеличивая скорость ее вращения. Кроме того, трение нагревает газ, и он излучает фотоны. Завихрение пространства вокруг дыры захватывает эти движущиеся по ходу ее вращения фотоны и отбрасывает их прочь, из-за чего они не могут попасть внутрь. И напротив, завихрение захватывает фотоны, которые движутся в сторону, противоположную вращению дыры, и засасывает их внутрь, где они замедляют ее вращение. В итоге, когда скорость вращения черной дыры достигает 0,998 от предельной, устанавливается баланс, при котором замедление за счет захваченных фотонов в точности компенсирует убыстрение за счет поступающего в дыру газа. По-видимому, этот баланс довольно устойчив, и в большинстве случаев можно ожидать, что скорость вращения черной дыры не превышает 0,998 от предельной.

Однако я могу вообразить ситуации – очень редкие, если вообще встречающиеся в реальной Вселенной, и все же возможные, – когда скорость вращения подходит к предельной гораздо ближе, и даже настолько близко, насколько это требовалось Крису, чтобы замедлить время на планете Миллер: скорость на одну стотриллионную долю меньше предельной. Маловероятно, но возможно.

В кино это не редкость: чтобы снять шедевр, режиссер часто доводит все до предела. В фэнтезийных фильмах вроде «Гарри Поттера» этот предел находится далеко за границами научной достоверности. В научной же фантастике он, как правило, остается в границах вероятного. Собственно, это главное отличие между фэнтези и научной фантастикой. «Интерстеллар» – научная фантастика, а не фэнтези. Сверхбыстрая скорость вращения Гаргантюа с научной точки зрения возможна.

Анатомия Гаргантюа
Интерстеллар: наука за кадром

Узнав массу и скорость вращения Гаргантюа, я использовал уравнения Эйнштейна, чтобы рассчитать ее анатомию. Так же как и в главе 5, здесь мы рассмотрим только внешнюю анатомию, отложив внутреннее строение (особенно сингулярность) Гаргантюа до глав 26 и 28.

В верхней части рис. 6.3 показана форма экваториальной плоскости Гаргантюа, если смотреть на нее из балка. Этот рисунок напоминает рис. 5.5, но, поскольку скорость вращения Гаргантюа гораздо ближе к предельной (одна стотриллионная, а не две тысячные, как на рис. 5.5), «горловина» у Гаргантюа намного длиннее. Она тянется далеко-далеко вниз, прежде чем достигает горизонта. Область возле горизонта, если смотреть на нее из балка, похожа на продолговатый цилиндр. Длина этого цилиндра составляет около двух окружностей горизонта, то есть два миллиарда километров.


Интерстеллар: наука за кадром

Рис. 6.3. Анатомия Гаргантюа при скорости вращения на одну стотриллионную меньше предельной (что необходимо для радикального замедления времени на планете Миллер)


На рис. 6.3 поперечные сечения цилиндра представлены окружностями, но если бы мы, сдвинувшись от экваториальной плоскости Гаргантюа, восстановили третье измерение нашей браны, эти сечения стали бы сплюснутыми сферами (сфероидами).

Я отметил на экваториальной плоскости Гаргантюа некоторые специфические участки: горизонт событий (черная окружность); критическая орбита, с которой Купер и ТАРС падают к Гаргантюа (зеленая окружность; см. главу 27); орбита планеты Миллер (синяя окружность; см. главу 17); орбита, на которой остается «Эндюранс», ожидая возвращения экипажа с планеты Миллер (желтая окружность); сегмент неэкваториальной орбиты планеты Манн в проекции на экваториальную плоскость (фиолетовая окружность). Дальняя часть орбиты планеты Манн пролегает на столь большом расстоянии от Гаргантюа (не менее 600 радиусов Гаргантюа; см. главу 19), что, чтобы изобразить ее, понадобилось перейти на другой масштаб (нижняя часть рис. 6.3), и даже после этого пришлось схитрить: я нарисовал дальнюю часть орбиты на расстоянии 100 радиусов Гаргантюа вместо 600. Сокращение ОО в подписях к красным окружностям означает «огненная оболочка» (о ней – следующий параграф).

Откуда мне знать, как располагаются все эти окружности? Орбиту ожидания я определил ориентировочно, а о прочем расскажу позже. В фильме Купер описывает орбиту ожидания так: «Мы встанем на высокую орбиту, параллельную орбите планеты Миллер, но немного дальше». При этом, по его словам, корабль должен находиться достаточно далеко от Гаргантюа, чтобы «избежать сдвига времени», то есть достаточно далеко, чтобы замедление времени относительно земного было незначительным. Я выбрал орбиту в пять радиусов Гаргантюа (желтая окружность на рис. 6.3). Время, которое «Рейнджер» в фильме затрачивает на путь от орбиты ожидания до планеты Миллер, – 2,5 часа – как раз подходит для этого расстояния.

Однако тут есть одна закавыка. На таком расстоянии Гаргантюа выглядела бы огромной, она бы закрывала для «Эндюранс» около 50 градусов обзора. Впечатляюще, конечно, но чересчур впечатляюще, когда до конца фильма еще далеко! Поэтому Крис и Пол решили изобразить Гаргантюа, видимую с орбиты ожидания, гораздо меньшей: примерно два с половиной градуса обзора, то есть в пять раз больше Луны, видимой с Земли, – все еще впечатляюще, но в меру.

Огненная оболочка
Интерстеллар: наука за кадром

Гравитация вблизи Гаргантюа настолько сильна, а пространство и время настолько искривлены, что свет (фотоны) может задерживаться на орбитах снаружи горизонта событий, снова и снова путешествуя вокруг дыры, прежде чем ее покинуть. Такие орбиты нестабильны в том смысле, что фотоны всегда, рано или поздно, их покидают. (В отличие от фотонов, попавших за горизонт, которые, напротив, уже никогда не выйдут наружу.)

Я называю такой задержавшийся на орбите свет «огненной оболочкой». Эта огненная оболочка играет важную роль в компьютерном моделировании (см. главу 8) для «Интерстеллар».

В случае невращающейся черной дыры огненная оболочка представляет собой сферу с окружностью в 1,5 раза больше, чем окружность горизонта. Свет путешествует по этой сфере огромными кругами (похожими на земные меридианы); часть его уходит в черную дыру, а часть – просачивается наружу, улетая прочь.

Если же черная дыра вращается, ее огненная оболочка расширяется к дыре и от нее, приобретая таким образом некую конечную толщину, а не образуя лишь поверхность сферы. Для Гаргантюа, с ее огромной скоростью вращения, огненная оболочка занимает на экваториальной плоскости (рис. 6.3) участок от нижней красной окружности до верхней красной окружности. Она настолько широка, что заключает в себя и планету Миллер, и критическую орбиту, и много чего еще! Нижняя красная окружность – это луч света (фотонная орбита), который движется вокруг Гаргантюа по ходу ее вращения. Верхняя красная окружность – фотонная орбита, которая движется против хода вращения дыры. Нетрудно понять, что пространственный вихрь позволяет свету, направленному по ходу вращения дыры, не падать в дыру, находясь гораздо ближе к горизонту, чем это может свет, направленный против хода вращения. Вот сколь сильно воздействие пространственного вихря!

Вход
Поиск по сайту
Ищем:
Календарь
Навигация