Негативное воздействие стресса на гиппокамп
Как длительный стресс влияет на память, связанную с гиппокампом? Этот процесс хорошо изучен на лабораторных животных.
Во-первых, нейроны гиппокампа прекращают нормально работать. Стресс может нарушить долговременную потенциацию в гиппокампе даже при отсутствии глюкокортикоидов (как у крысы с удаленными надпочечниками). По-видимому, это происходит из-за очень сильного возбуждения симпатической нервной системы. Тем не менее основные исследования в этой области сосредоточены на глюкокортикоидах. Как только уровень глюкокортикоидов переходит из диапазона, характерного для умеренных стрессоров, в диапазон, типичный для сильного стресса, этот гормон больше не способствует долговременной потенциации — процессу, в ходе которого соединение между двумя нейронами что-то «помнит», становясь более возбудимым. Вместо этого глюкокортикоиды теперь нарушают этот процесс. Кроме того, высокий уровень глюкокортикоидов также усугубляет так называемое долговременное подавление — возможно, именно этот механизм лежит в основе процесса забывания, противоположного «ага»-реакции гиппокампа.
Как же получается, что небольшое увеличение уровня глюкокортикоидов (во время умеренного стрессора) делает одно (укрепляет потенциацию связи между нейронами), а большой рост уровня глюкокортикоидов приводит к прямо противоположному результату? В середине 1980-х годов Рон де Клет из Университета Утрехта в Нидерландах обнаружил очень изящный ответ. Оказывается, в гиппокампе есть много рецепторов глюкокортикоидов и эти рецепторы бывают двух типов. Оказалось, что гормон примерно в десять раз лучше связывается рецепторами первого типа (их назвали «высокоаффинными» рецепторами), чем с рецепторами другого типа. Это значит, что, если уровень глюкокортикоидов повышен ненамного, влияние этих гормонов в гиппокампе контролируют высокоаффинные рецепторы. И наоборот, если мы имеем дело с сильным стрессором, гормон активирует низкоаффинные рецепторы. И, что совершенно логично, оказывается, что активация высокоаффинных рецепторов улучшает долговременную по- тенциацию, а активация низкоаффинных рецепторов приводит к противоположным результатам. Так формируется инвертированная U-образная зависимость, о которой мы говорили выше.
В предыдущем разделе мы уже отмечали, что область головного мозга, которую называют миндалевидным телом, играет центральную роль в типах эмоциональных воспоминаний, связанных с тревожностью. Но миндалевидное тело играет важную роль и здесь. Его активность повышается при воздействии сильного стрессора, и оно отправляет в гиппокамп очень много нейронных проекций. Возможно, активация этого пути приводит к тому, что стресс начинает нарушать функционирование гиппокампа (рис. 39). Повредите у крысы миндалевидное тело или рассеките его связи с гиппокампом, и стресс больше не будет ослаблять связанную с гиппокампом память даже при повышенном уровне глюкокортикоидов. Это объясняет открытие, возвращающее нас к теме физиологических «отметин» стресса, а также демонстрирует, что та или иная активность может представлять вызов для физиологического аллостаза, не являясь при этом психологически негативной. Например, секс повышает уровень глюкокортикоидов у самцов крыс, не активируя при этом миндалевидное тело и не нарушая функционирования гиппокампа.
Во-вторых, нейронные сети теряют связность. Если мы вернемся к диаграмме «нейронов импрессионизма» (см. рис. 36), то увидим на ней условные обозначения, указывающие на то, как один нейрон говорит с другим, отправляя к нему «проекции». Как мы говорили несколькими абзацами ниже этой диаграммы, эти проекции совершенно реальны — это длинные, разветвленные отростки, отходящие от нейронов, формирующие синапсы с разветвленными отростками других нейронов. Эти отростки (аксоны и дендриты), очевидно, отвечают за коммуникацию между нейронами и формирование нейронных сетей. Брюс Макьюен показал, что у крысы всего через несколько недель постоянного стресса или после введения больших доз глюкокортикоидов эти отростки начинают иссушаться, истощаться и терять связность. То же самое может происходить в мозге приматов. При этом синаптические связи прерываются и сложность нейронных сетей снижается. К счастью, кажется, что в конце стрессового периода нейроны могут восстанавливаться и воссоздавать связи друг с другом.
Рис. 39. Нейроны гиппокампа крысы. Слева здоровые нейроны; справа — нейроны и их отростки, истощенные длительным стрессом
Такая временная атрофия нейронных процессов, вероятно, объясняет характерную особенность проблем с памятью во время хронического стресса. Если после обширного инсульта или на последней стадии болезни Альцгеймера в гиппокампе разрушаются большие области нейронов, это сильно ослабляет память. Воспоминания могут полностью исчезнуть, и человек не может вспомнить, например, как зовут его жену. Если во время хронического стресса нейронная сеть «слабеет» и «ветки» нейронных «деревьев» начинают сохнуть, то воспоминания о том, как зовут Тулуз- Лотрека, никуда не исчезают. Просто приходится дольше это вспоминать и создавать для этого больше ассоциаций, ведь все сети, задействованные в этом процессе, работают менее эффективно. Воспоминания не пропали, просто к ним труднее получить доступ.
В-третьих, формирование новых нейронов подавляется. Если бы в последнюю тысячу лет вам довелось изучать основы нейробиологии, вам бы то и дело повторяли, что взрослый мозг не создает новых нейронов. Недавно стало ясно, что это мнение совершенно ошибочно[69]. Поэтому исследования «нейрогенеза у взрослых» сегодня стали одной из самых горячих тем нейробиологии.
Две особенности такого нейрогенеза имеют непосредственное отношение к теме этой главы. Во-первых, гиппокамп — один из двух отделов мозга, где формируются новые нейроны[70]. Во-вторых, скорость нейрогенеза может меняться. Процесс обучения, окружающая среда, богатая стимулами, физические упражнения или прием эстрогена увеличивают скорость нейрогенеза, а самые сильные его ингибиторы, идентифицированные до настоящего времени, как и следовало ожидать, — глюкокортикоиды и стресс, даже если он длится всего несколько часов, по крайней мере у крыс.
Возникают два ключевых вопроса. Во-первых, когда стресс прекращается, восстанавливается ли нейрогенез, и если да, то как быстро? Пока мы этого не знаем. Во-вторых, каковы последствия того, что стресс снижает способность к нейрогенезу у взрослых людей? С этим вопросом связан еще один: для чего взрослым нужен нейрогенез? Этот вопрос вызывает жаркие споры, и противники публично сражаются друг с другом на аренах научных конференций. В одном углу ринга — исследователи, которые предполагают, что при соответствующих условиях в гиппокампе может происходить активный нейрогенез, новые нейроны формируют связи с другими нейронами, и эти новые связи фактически необходимы для определенных типов обучения. Соперники в другом углу ринга упорно отвергают эти идеи. Слово за рефери.
В-четвертых, нейроны гиппокампа оказываются в опасности. Как мы уже говорили, через несколько секунд после начала стресса увеличивается поступление глюкозы в мозг. А если стресс продолжается? Примерно через 30 минут непрерывного действия стрессора поступление глюкозы перестает расти и возвращается к нормальному уровню. Если стресс продолжается, поступление глюкозы в мозг даже снижается, особенно в область гиппокампа. Оно снижается примерно на 25%, и это происходит из-за глюкокортикоидов[71].