Книга Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы, страница 21. Автор книги Александр Марков

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы»

Cтраница 21

Таким образом, протеородопсины повышают жизнеспособность морских бактерий лишь в условиях низких (но не слишком низких) концентраций растворенной органики. Возможно, отрицательные результаты, полученные ранее с Pelagibacter, объясняются именно нерациональным количеством органики в опытных средах.

Так или иначе, мы теперь знаем, что многочисленные и разнообразные морские микробы, имеющие в своем геноме гены протеородопсинов, действительно могут быть факультативными фототрофами, то есть способны разнообразить свою диету, состоящую в основном из растворенной органики, солнечным светом.

(Источники: 1. Laura Gómez-Consarnau et al. Light stimulates growth of proteorhodopsincontaining marine Flavobacteria // Nature. 2007. V. 445. P. 210–213; 2. Gazalah Sabehi et al. New insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins // PLoS Biol. 2005. 3(8): e273.)

—————

Изобретение аноксигенного фотосинтеза было большим шагом вперед. Живые существа, овладевшие секретом фотосинтеза, получили доступ к неисчерпаемому источнику энергии — солнечному свету. Правда, их зависимость от дефицитных химических веществ, поступающих понемногу из земных недр, при этом все-таки сохранилась. Дело в том, что для фотосинтеза одного света мало — нужно еще какое-нибудь вещество, от которого можно оторвать электрон (это называется «фотоокисление»). В простейшем случае в роли донора электрона при фотосинтезе выступает сероводород. В результате деятельности аноксигенных фотосинтетиков сероводород превращается в серу (S) или сульфат (SO42-). Опять незамкнутый цикл и накопление отходов!

Но жизнь уже набирала силу, разнообразие микробов росло, и незамкнутые циклы постепенно начинали замыкаться. Планета захлебывается метаном и сульфатами? Что ж, эволюция нашла отличный выход из сложной ситуации: появились микроорганизмы, способные окислять метан при помощи сульфатов. Это были не просто микробы, а симбиотические микробные сообщества, состоящие из архей и бактерий. Архей окисляли метан, а бактерии восстанавливали сульфаты, причем оба процесса были каким-то не до конца еще понятным образом сопряжены между собой в неразрывное целое. Такие сообщества сохранились и по сей день в соответствующих местах обитания — там, где достаточно метана и сульфатов (например, в окрестностях подводных грязевых вулканов — см. ниже сюжет «В подводном грязевом вулкане обнаружены неизвестные микробы»).

Результатом окисления метана был углекислый газ, необходимый всем автотрофам, а результатом восстановления сульфатов — сероводород, который с удовольствием использовали фотосинтетики. Циклы замыкались, биосфера приобретала устойчивость и способность к саморегуляции. Начиналась эпоха Великого Содружества Микробов.

Примерно в тот же период (свыше 3,2 млрд лет назад), по-видимому, появились и первые гетеротрофы — так называемые бродильщики, которые получают энергию за счет бескислородной ферментации (сбраживания) готовой органики, произведенной автотрофами. В качестве отходов жизнедеятельности бродильщики имеют обыкновение выделять молекулярный водород, до которого в древней биосфере уже были охотники: во-первых, археи-метаногены, во-вторых, бактерии-сульфатредукторы (они охотно используют молекулярный водород в качестве восстановителя для восстановления сульфатов).

Ясно, что на этом этапе большинство микроорганизмов уже не могли обходиться друг без друга. Даже в наши дни многие бродильщики наотрез отказываются расти в отсутствие микробов, утилизирующих выделяемый ими водород (сульфатредукторов или метаногенов), а тем, в свою очередь, жизнь не мила без бродилыциков.

Уже 3,55 млрд лет назад на Земле, по-видимому, существовали сложные микробные сообщества — бактериальные маты. Именно они, скорее всего, ответственны за образование древнейших строматолитов. В наши дни нечто подобное можно наблюдать в некоторых экстремальных местообитаниях, таких как горячие источники. Древние бактериальные маты, вероятно, состояли из двух слоев. В верхнем обитали аноксигенные фототрофы. Они синтезировали органику из углекислого газа, потребляли сероводород и выделяли сульфаты. В нижнем слое жили бродильщики (они потребляли органику, произведенную фототрофами, и выделяли водород), сульфатредукторы (потребляли сульфаты и водород, производили сероводород), а также, возможно, метаногены с метанотрофами. В ходе жизнедеятельности сообщества под ним постепенно, слой за слоем, накапливался уплотненный осадок — так формировались слоистые образования, известные под названием строматолитов. Карбонат кальция — основной строительный материал строматолита — отчасти осаждался из морской воды, отчасти продуцировался самими микробами (в первую очередь сульфатредукторами).

Реликтовые микробные сообщества

В реконструкции древнейших этапов развития микробной жизни большую роль играют исследования современных реликтовых микробных сообществ. Некоторые из них, как недавно выяснилось, могут существовать в полном отрыве от всей остальной биосферы в течение миллионов лет, получая все необходимое исключительно из земных недр.

Одно из таких уникальных сообществ недавно было обнаружено глубоко под землей в Южной Африке. Все началось с того, что старатели на южноафриканском золотом прииске Мпоненг (Mponeng) стали бурить очередную скважину и на глубине 2,8 км наткнулись на водоносный слой. Глубинные воды, затерянные среди базальтов возрастом 2,7 млрд лет, находились под большим давлением, имели щелочную реакцию и оказались насыщены всевозможной химией: различными солями, среди которых преобладают сульфаты, растворенными газами, такими как водород, метан, углекислый газ и другие, и простыми органическими соединениями (углеводородами, формиатом, ацетатом). Большая часть органики, судя по изотопному составу, имеет абиогенное происхождение, то есть порождена не живыми организмами, а геологическими процессами. Температура подземной воды — чуть выше 60 градусов.

Находка привлекла внимание микробиологов, изучающих биоту земных недр. На сегодняшний день хорошо известно, что толща земной коры заселена микроорганизмами вплоть до глубины в 6–7 км или даже более. Подземные микробы, по-видимому, играют большую роль во многих геохимических процессах, в том числе в образовании и деструкции нефти и газа. Неясным остается вопрос о том, в какой степени эта инфернальная микробиота является автономной, независимой от «внешней», большой биосферы, которая живет в основном за счет энергии солнечного света.

Многие подземные микробы окисляют углеводороды или, к примеру, сульфиды при помощи кислорода, произведенного оксигенными фотосинтезирующими организмами (растениями и цианобактериями). Таких микробов, очевидно, нельзя назвать полностью автономными: исчезни жизнь на поверхности, и они тоже со временем погибнут. Другие — такие как археи-метаногены, восстанавливающие углекислый газ до метана при помощи водорода, — по-видимому, могли бы существовать в земных недрах неопределенно долго и после гибели всего живого на поверхности. Но до сих пор ни для одного подземного микробного сообщества не удавалось точно доказать, что оно в течение долгого времени действительно не использовало никаких веществ, произведенных «большой биосферой», и получало все необходимое исключительно из недр Земли.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация