Книга Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы, страница 44. Автор книги Александр Марков

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы»

Cтраница 44

Яркий пример параллельной эволюции: сумчатый саблезубый тигр Thylacosmilus из плиоцена Южной Америки (вверху) и «обычный» саблезубый тигр Smilodon из плейстоцена Северной Америки.

—————

Пути эволюции предопределены на молекулярном уровне

В наши дни бурное развитие молекулярной биологии привело к тому, что многие важные биологические закономерности, в том числе явление параллельной эволюции, временно оказались как бы за рамками «настоящей серьезной науки» — просто потому, что их пока не удается объяснить на молекулярном уровне.

Поэтому предпринятая учеными из Гарвардского университета попытка найти молекулярные основы канализированности (ограниченности возможных путей) и повторяемости эволюции имеет большое теоретическое значение [48]. В качестве модели исследователи выбрали адаптацию бактерий к антибиотикам — сравнительно простой эволюционный процесс, высокодетерминированный и повторяемый и к тому же имеющий большое практическое значение. Исследование наглядно показало, что в эволюции может быть реализована лишь очень небольшая часть из общего числа теоретически существующих путей «из точки А в точку Б».

Бактерии приспосабливаются к антибиотикам из группы бета-лактамов (к которым относится, в частности, пенициллин) благодаря изменениям гена, кодирующего фермент бета-лактамазу. Предполагается, что мутации возникают случайно, причем вредные мутации отсеиваются отбором, а полезные закрепляются.

В ходе адаптации бактерий к цефотаксиму — антибиотику третьего поколения из группы бета-лактамов — в исходный вариант гена бета-лактамазы вносится пять вполне конкретных мутаций, в результате чего устойчивость к антибиотику возрастает в 100 000 раз. Но такой эффект дают только все пять мутаций вместе. Понятно, что одновременное появление сразу пяти «нужных» мутаций невероятно: они должны появляться и фиксироваться последовательно, одна за другой. Значит, на пути к конечной цели организм должен пройти через четыре промежуточных состояния. Если хотя бы одно из них окажется менее выгодным, чем предыдущее, оно будет забраковано отбором, и конечная цель не будет достигнута.

Теоретически существует 5(!) = 120 различных траекторий движения от исходного состояния (отсутствие устойчивости к цефотаксиму) к конечному, то есть к очень высокой устойчивости. Экспериментальным путем ученые установили, что из 120 теоретически возможных путей последовательного приобретения пяти мутаций большинство (102) вообще не могут реализоваться, так как требуют на каком-то этапе временного снижения приспособленности (в данном случае под «приспособленностью» понимается устойчивость к цефотаксиму). Оставшиеся 18 путей очень сильно различаются по вероятности своей реализации. Расчеты показали, что в 99% случаев эволюция «выберет» один из 10, а в 50% случаев — один из двух наиболее вероятных путей.

Вполне возможно, что это правило распространяется и на эволюцию других белков. Это значит, что молекулярной эволюции свойственны высокие повторяемость и предсказуемость. Разные организмы должны независимо друг от друга двигаться по одним и тем же «разрешенным» эволюционным траекториям. Не исключено, что аналогичные ограничения могут направлять и канализировать дарвиновскую эволюцию и на более высоких уровнях организации живого.

Приключения Protozoon (модель возникновения сложного организма из простого)

Попробуем понять, как же все-таки в ходе эволюции сложное может рождаться из простого. Для этого я хочу предложить вниманию читателей забавную мысленную модель.

Героем нашего повествования будет вымышленное, но довольно правдоподобное одноклеточное существо Protozoon, имеющее вполне обычный жизненный цикл, всего один «орган» — глазок — и всего один внутренний регуляторный фактор (сигнальное вещество X) с двумя эффектами. Это незамысловатое простейшее, как мы увидим, в результате одной-единственной случайной мутации автоматически может дать начало целому вееру сложных многоклеточных форм со своими онтогенезами (способами индивидуального развития), жизненными циклами, разделением тела на вегетативную и генеративную части («сому» — тело и «герму» — половые клетки).

Итак, прошу познакомиться: Protozoon, диплоидный [49] одноклеточный эукариотический организм с простым жизненным циклом. В благоприятных условиях у зиготы [50] образуется глазок. Глазок стимулирует выработку сигнального вещества X.

Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы

Как у большинства реальных одноклеточных эукариот, клетка нашего Protozoon может делиться двумя способами: митозом (получаются две диплоидные дочерние клетки) и мейозом (получаются четыре гаплоидные половые клетки — гаметы, снабженные жгутиками и потому подвижные).

Сигнальное вещество X имеет два эффекта. В концентрации 1 оно подавляет процесс образования глазков, а в концентрации 4 и выше приводит к тому, что созревшая клетка будет делиться митозом (при меньшей концентрации — мейозом). Вещество X способно с определенной скоростью проникать сквозь мембрану (оболочку) клетки в обе стороны.

—————

Митоз — деление эукариотической клетки, в результате которого из одной родительской клетки получаются две дочерние с таким же числом хромосом, как и у родительской. Например, митоз диплоидной клетки приводит к формированию двух диплоидных клеток.

Мейоз — «редукционное деление» эукариотической клетки, в результате которого число хромосом сокращается вдвое. Из диплоидной родительской клетки (с двойным набором хромосом) получаются четыре гаплоидных клетки с одинарным набором хромосом. У животных таким путем образуются половые клетки — яйцеклетки и сперматозоиды.

—————

Глазок к тому же придает клетке полярность. Это проявляется в том, что, когда клетка делится путем митоза, плоскость деления всегда располагается перпендикулярно тому диаметру клетки, на котором находится глазок. В результате глазок «достается» одной из дочерних клеток, а другая поначалу не имеет глазка. Будем считать, что ориентация плоскости деления задается глазком при помощи выделяемого им вещества X. Концентрация этого вещества максимальна возле глазка и постепенно снижается по мере удаления от него. Иными словами, существует «градиент концентрации» вещества X, и плоскость деления всегда перпендикулярна направлению этого градиента.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация