Компьютер 1 может оказаться отрезанным от сети, как на рис. 4.3 сверху с вероятностью 0,4 × 0,4 × 0,6 = 0,096(×100 %) = 9,6 %. В аналогичную ситуацию могут попасть компьютеры 2 и 3 с той же долей вероятности. Наконец, надо добавить вероятность самой плохой ситуации, как на рис. 4.3 снизу, которая равна 0,4 × 0,4 × 0,4 = 0,064(×100 %) = 6,4 %. В результате получается, что наша сеть «развалится» с вероятностью 3 × 9,6 % + 6,4 % = 35,2 %.
Конечно, 35,2 % – довольно много, но мы взяли нереально большую вероятность помех. Самое интересное, что вероятность потери связи в сети меньше, чем вероятность потери связи в одном канале: 35,2 % меньше, чем 40 %. Сеть более устойчива, чем отдельно взятый канал!
Даже из нашего мини-примера понятно, откуда берется устойчивость сети. В сети компьютеры могут связаться друг с другом не одним, а несколькими способами, через другие компьютеры. Если один канал недоступен, можно найти альтернативный маршрут. Более того, этот эффект заметно усиливается при меньшей вероятности помех. Для примера мы приводим несколько результатов в табл. 4.1
[8]
.
Таблица 4.1. Вероятности потери связи в мини-сети (правая колонка) при заданной вероятности потери связи в одном канале (левая колонка)
Мы видим, что значения в правой колонке убывают гораздо быстрее, чем в левой. Если вероятность недоступности канала 1 % – величина вполне реальная на практике, – то наша скромная мини-сеть в 33 раза устойчивее, чем отдельный канал связи!
Конечно, наш мини-интернет очень далек от реальности. Что, если у нас не три компьютера, а целая сеть из десятков, сотен, тысяч машин? Скорость света по-прежнему позволит передавать информацию не напрямую, а по длинным цепочкам. Однако подсчет вероятностей значительно затруднится.
И вот тут опять понадобится математика! Задачи об устойчивости больших сетей требуют глубоких концепций и новых моделей на стыке комбинаторики и теории вероятностей. К счастью, необязательно вникать в длинные доказательства, чтобы понять основные идеи. О некоторых таких фундаментальных идеях, проникающих в самую суть устройства сетей и уже ставших классикой, мы расскажем в следующих разделах.
Случайные графы
Математическая теория, которая, в частности, позволяет ответить на вопрос об устойчивости больших сетей, возникла на рубеже 50–60-х годов XX века. Ее авторами стали два замечательных венгерских математика Пол Эрдеш и Альфред Реньи
{9}
{10}
.
Эрдеш – настоящий классик современной комбинаторики, теории чисел, теории вероятностей. Он написал более полутора тысяч статей, решил множество проблем и еще больше поставил задач, которые определили пути развития науки на долгие годы. Реньи – выдающийся венгерский специалист по теории вероятностей. Его именем назван математический институт в Будапеште, подобно тому как математический институт в Москве носит имя Владимира Андреевича Стеклова.
Пол Эрдеш
Пол Эрдеш (1913–1996) очень необычная фигура в математике. Он написал около 1500 статей с 509 соавторами.
Практически вся его собственность умещалась в один чемодан. Деньги его совсем не интересовали. Он жил в дороге, ездил с одной конференции на другую или останавливался у коллег. Рассказывают, что он появлялся на пороге и говорил: «Мой мозг открыт». Затем он работал с хозяевами несколько дней, получал результаты для нескольких статей и ехал дальше, в следующий дом и к другим задачам.
Его соавтор Фэн Чжун написала в своих воспоминаниях: «Все 83 года своей жизни он был абсолютно верен себе. Его не соблазняли посты и деньги. Большинство из нас окружили себя множеством земных благ и обязательств. Каждая встреча с ним напоминала мне, что это все-таки возможно, вот так идти за своей мечтой, не обращая никакого внимания на мелочи жизни. Именно по этому качеству дяди Пола я скучаю больше всего».
В математике, как в искусстве или моде, есть индивидуальные стили и вкусы. Соавторы Эрдеша рассказывают, что ему удавалось найти задачи, подходящие именно для них. Так хорошо он понимал своих соавторов и столько разных задач у него было в запасе! Результаты Эрдеша – разнообразные и в огромном количестве – сильно повлияли на современную науку.
Среди математиков есть понятие число Эрдеша. Это количество соавторов, которые отделяют математика от Эрдеша. У соавторов Эрдеша число Эрдеша равно 1. У их соавторов, которые с Эрдешем не работали, число Эрдеша – 2. И так далее. Самое распространенное значение – 5, и очень редко у кого из математиков число Эрдеша равно 8 или больше.
У одного из нас число Эрдеша 3, а у другого 2. Мы оба работаем со случайными графами и вносим свой посильный вклад в решение пока нерешенных проблем.
Теория, основы которой заложили Эрдеш и Реньи, называется теорией случайных графов. А математическая модель, рассмотренная в их первых работах, носит имя случайный граф Эрдеша – Реньи. Конечно, эти графы не имеют ничего общего с князьями и баронами. Слово «граф» в данном случае имеет то же происхождение, что и слово «график», хорошо известное со школы. Граф – это просто рисунок.
Например, нашу мини-сеть из предыдущего раздела очень легко представить в виде графа. Мы это сделали на рис. 4.4 слева. Сеть изображена в виде трех узлов (компьютеров), которые соединены линиями (каналами связи). В математике узлы называются вершинами графа, а линии между ними – ребрами. Чтобы не затруднять восприятие абстрактными терминами, мы в основном будем пользоваться более интуитивными терминами «узлы» и «линии»
[9]
.
Рис. 4.4. Слева: мини-сеть в виде графа. Узлы – это компьютеры, а линии – каналы связи. Справа: социальная сеть из главы 7
в виде графа. Узлы – это люди, а линии – «дружба» в социальной сети
В главе 7
мы вернемся к графам, когда будем обсуждать социальную сеть. В этом случае узлы – это люди, а линии между ними – «дружба» в социальной сети. Мы изобразили пример графа из главы 7
на рис. 4.4 справа.