Казалось бы, теперь мы можем ответить на любые вопросы. Какие продукты наращивают популярность? Насколько широко используются наши услуги, карты, банкоматы? Но, оказывается, разобраться в миллионах электронных записей не так уж просто, даже при наличии самых мощных компьютеров. Особенно если ответы нужны прямо сейчас!
Большие данные сами по себе не дают ответа на все наши вопросы. Их анализ влечет за собой множество проблем.
В этой главе мы расскажем только об одной такой проблеме. Звучит она совершенно элементарно, но для ее решения понадобилась новая и далеко не тривиальная математическая теория. Почему? Потому что, как и во многих других задачах с большими данными, ее наивное решение приводит к абсолютно невыполнимым требованиям к компьютерной памяти.
Чтобы было понятно, мы расскажем о самой проблеме чуть позже, в разделе «Раз, два, три, четыре, пять…»
. А сначала вкратце объясним, как устроена компьютерная память и почему, несмотря на ее мощь и колоссальный объем, она все-таки не всесильна.
Компьютерная память
Мы уже рассказали в главе 3
, что вся информация в компьютере записывается в виде нулей и единиц. Каждый ноль и единица физически занимают крошечную ячейку памяти. Чтобы сохранить одну цветную фотографию на 3 мегабайта, понадобится
3×8×220=25 165 824,
то есть больше 25 миллионов таких ячеек.
Обычно память работает на полупроводниках. Но мы будем просто считать (для нашего рассказа этого достаточно), что компьютерная память – это физическое устройство, где каждый символ (0 или 1) занимает место. Такие устройства могут быть самыми разными, например CD, DVD или флешка. В любом компьютере информация записывается на жесткий диск. Качество устройств памяти непрерывно улучшается. На жестком диске современных ноутбуков может умещаться, скажем, 320, а то и больше гигабайтов. Этого хватит, чтобы сохранить более ста тысяч цветных фотографий!
Если вам нужно еще больше памяти, можно хранить данные на удаленном сервере. Многие компании, в том числе Google и Amazon, предлагают подобные услуги. Это очень популярный сервис. Возможно, вы тоже что-то храните «в облаке».
У таких информационных гигантов, как Google и «Яндекс», есть свои дата-центры. Если вы хотите получить представление о том, как выглядят дата-центры «Яндекса», можете зайти, например, на сайт https://yandex.ru/company/technologies/datacenter
. Фактически дата-центры – это целые комплексы, которые занимают большие территории, где каждое строение либо заполнено серверами, либо предназначено для их энергоснабжения, охлаждения и обслуживания.
Компьютерная память сама по себе пока еще не является ограниченным ресурсом. Дисков и серверов мы можем построить достаточно. Вопрос в том, как воспользоваться всей этой информацией. И вот здесь возникают проблемы, потому что диск не в состоянии «сообразить» или «вспомнить». Чтобы извлечь информацию, компьютер должен найти нужную ячейку памяти.
На доступ к информации на жестком диске или сервере уходит какое-то время. Это можно представить себе примерно так. Предположим, вы читаете дома книгу на английском языке со словарем. Только словарь лежит в библиотеке! И вы бегаете в библиотеку и обратно за каждым словом, причем каждый раз аккуратно ставите словарь обратно на полку и в следующий раз заново ищете его по каталогу. Конечно, компьютер найдет информацию на диске быстрее, чем вы добежите до библиотеки. Но и операций он выполняет гораздо больше, поэтому сравнение вполне уместное.
Без сомнения, намного удобнее, когда словарь лежит рядом с вами на диване. Для этого у компьютера есть так называемая оперативная память. Информация считывается с диска, обрабатывается в оперативной памяти, после чего результаты снова сохраняются на диске, а оперативная память освобождается для следующей задачи.
Доступ к оперативной памяти происходит очень быстро, несравнимо с жестким диском. Но именно поэтому ее объем существенно ограничен. На вашем диване не поместится полбиблиотеки. Обычный ноутбук может предложить, например, 2 гигабайта оперативной памяти. Кстати, как раз из-за этого компьютер начинает «тормозить», если у вас открыто слишком много программ и документов.
Получается, что могущество компьютерной памяти сильно ограничено. У памяти на диске или сервере практически бесконечный объем, зато ограничена скорость доступа. А у оперативной памяти скорость феноменальная, зато объем очень маленький.
Какие последствия все это имеет для обработки больших данных? Оказывается, это фундаментальная и серьезная проблема даже для самых незамысловатых операций.
Раз, два, три, четыре, пять…
Рассмотрим небольшой пример. Допустим, банк выпустил пятьдесят кредитных карт с номерами 01, 02… 50. Всего было проведено 30 трансакций по картам с номерами:
Спрашивается: сколько клиентов воспользовалось кредитными картами?
Попробуйте сами ответить на этот вопрос. Каковы ваши действия? Поначалу все просто: 15 – это раз, 48 – два, 32 – три, 31 – четыре. Дальше снова 48, но эта та же карточка, поэтому мы ее не считаем. 27 – пять. В первом ряду всего 8 разных номеров. А вот во втором ряду уже начинаются затруднения. Попадался нам номер 02 до этого или нет? А 29? Или 45? Наша память не в состоянии это удержать! В результате до конца третьего ряда можно добраться только одним способом – сравнивать каждый номер со всеми предыдущими и ставить пометку, если он раньше не встречался. Ответ: 22 карты. Ниже мы выделили разные номера жирным шрифтом.
Теперь представьте, что эту задачу выполняет компьютер. Каким образом можно сравнить номер каждой карты со всеми предыдущими? Особенно если трансакций не тридцать, а три миллиона? И вот тут возникает проблема с памятью. Считывать все номера заново с жесткого диска – непозволительно долго. А оперативная память переполнится гораздо раньше, чем мы дойдем до середины.
Что же получается? При наличии полных данных и самых мощных компьютеров мы не в состоянии подсчитать, сколько человек воспользовалось кредитными картами?! В принципе да, не в состоянии. И конечно, кредитные карты – это всего лишь пример. На самом деле мы вообще не в состоянии ничего посчитать!
У вас на сайте есть счетчик уникальных посещений? Скорее всего, он считает приблизительно.
Это и есть принципиальный подход к решению задачи о подсчете. Если точный ответ нам физически недоступен, нужно найти как можно более точный приблизительный ответ, который при этом использует минимальное количество памяти.