Книга Квантовая вселенная. Как устроено то, что мы не можем увидеть, страница 47. Автор книги Брайан Кокс, Джефф Форшоу

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Квантовая вселенная. Как устроено то, что мы не можем увидеть»

Cтраница 47

Сейчас мы сделаем то, что может изначально показаться слишком сложным, но, конечно, имеет под собой серьезные основания. Придется задействовать несколько А, В и Т – иными словами, мы снова возвращаемся на поле твидовых жилетов и меловой пыли; не беспокойтесь, это ненадолго.

Когда частица из точки А в нулевое время направляется к точке В во время Т, мы можем подсчитать, как будет выглядеть циферблат в точке В, переведя стрелки в точке А назад на величину, определенную расстоянием между В и А и временным интервалом. Иными словами, можем записать, что циферблат в точке В задается C(A, 0) P(A, B, T), где C(A, 0) представляет исходный циферблат в точке А и в нулевое время, а P(A, B, T) – воплощение правила перевода и уменьшения циферблатов, связанного со скачком из А в В [44]. Мы будем называть P(A, B, T) «пропагатором» (функцией распространения. – Прим. ред.) перемещения из точки А в точку В. Теперь, когда известно правило перемещения из точки А в точку В, мы готовы вычислить вероятность нахождения частицы в точке Х. На рис. 4.2 есть множество исходных точек, так что нам придется продвинуться в точку Х из всех этих стартовых точек и сложить все получившиеся циферблаты. В нашей кажущейся зубодробительной нотации получается циферблат C(X, T) = C(X1, 0) P(X1, X, T) + C(X2, 0) P(X2, X, T) + C(X3, 0) P(X3, X, T) +…, где X1, X2, X3 и так далее отражают все позиции частицы в нулевое время (то есть позиции кружков на рис. 4.2). Уточним: запись C(X3, 0) P(X3, X, T) просто значит «взять циферблат в точке Х3 и переместить ее в точку Х за время Т». Не стоит думать, что тут происходит нечто очень сложное. Все, что мы делаем, так это вкратце записываем то, что уже знаем: «взять циферблат в точке Х3 в нулевое время и рассчитать, насколько перевести стрелки и уменьшить циферблат в соответствии с путем частицы из точки Х3 в точку Х в некоторое более позднее время Т, а затем повторить процесс для всех остальных циферблатов в нулевое время и, наконец, сложить все циферблаты вместе по правилу сложения циферблатов». Уверены, вы согласитесь, что это слишком многословно, поэтому с сокращенной записью жить будет проще.

Мы имеем право считать, что пропагатор воплощает правило перевода и уменьшения циферблатов. Мы можем также считать пропагатор циферблатом. Чтобы оправдать это бессодержательное заявление, представьте, что мы с уверенностью знаем, что электрон находится в точке А во время Т = 0 и что эта ситуация описывается циферблатом размера 1, показывающем 12 часов. Мы можем изобразить перемещение с помощью второго циферблата, и его размер совпадает с величиной, на которую должен быть уменьшен исходный циферблат, а время, которое показывает второй циферблат, соответствует величине необходимого перевода часов. Если скачок электрона из точки А в точку В требует уменьшения исходного циферблата в 5 раз и перевода стрелок на 2 часа назад, то пропагатор P(A, B, T) можно представить в виде циферблата, размер которого равняется 1/5 = 0,2, а стрелки которого указывают на 10 часов (то есть переведены на 2 часа назад с 12). Циферблат в точке В получается простым «умножением» исходного циферблата в точке А на циферблат-пропагатор.

Отступление для тех, кто разбирается в комплексных величинах: как C(X1, 0) и C(X2, 0), так и P(X1, X, T), P(X2, X, T) могут быть представлены в виде комплексного числа, и они сочетаются в соответствии с математическими правилами умножения комплексных чисел.

Для тех, кто не разбирается в комплексных величинах: это неважно, потому что описание с помощью циферблатов столь же точно. Мы всего лишь представили слегка иной взгляд на правило перевода циферблатов: можно переводить стрелки и уменьшать циферблат с помощью другого циферблата.

Нам ничто не мешает выработать правило умножения циферблатов, которое будет работать: умножить размеры двух циферблатов (1 × 0,2 = 0,2) и совместить время на этих двух циферблатах таким образом, что стрелки первого циферблата будут переведены на время второго: 12 минус 10, то есть 2 часа. Кажется, что мы где-то слегка переусердствовали, и это определенно не то, что нужно, когда мы имеем дело лишь с одной частицей. Но физики ленивы, так что они не стали бы впадать во все эти сложные рассуждения, если бы это не экономило время и усилия в долгосрочной перспективе. Введенная здесь запись оказывается очень полезным способом следить за всеми переводами и уменьшениями циферблатов, когда мы подойдем к более интересному случаю с несколькими частицами – например, при рассмотрении атома водорода.

Независимо от деталей можно сказать, что в нашем методе подсчета вероятностей нахождения одинокой частицы где-то во Вселенной есть всего два ключевых момента. Во-первых, нужно указать набор исходных циферблатов, заключающих в себе информацию о том, где частица может находиться в нулевое время. Во-вторых, нужно знать пропагатор P(A, B, T), который сам выступает в роли циферблата, заключающего в себе правило перевода и уменьшения для частицы, перескакивающей из точки А в точку В. Если мы знаем, как выглядит пропагатор для любой пары исходных и конечных точек, то мы знаем все, что нужно знать, и можем с уверенностью высчитать величественно скучную динамику Вселенной, содержащей одну частицу. Впрочем, к ней нельзя относиться пренебрежительно, потому что такое простое положение дел слабо запутывается, когда в игру вступает взаимодействие частиц. Введем же его.

На рис. 10.1 графически изображены все ключевые идеи, которые мы хотим здесь обсудить. Это наше первое знакомство с диаграммами Фейнмана – средством расчета профессионального специалиста по физике частиц. Наша задача: найти вероятность обнаружения пары электронов в точках Х и Y в некоторое время Т. Сначала нам сообщается, где электроны находятся в нулевое время, то есть как выглядят исходные поля циферблатов. Это важно, потому что способность ответить на подобный вопрос эквивалентна способности узнать, «что происходит во Вселенной, содержащей два электрона». Кажется, в этом нет особого прогресса, но теперь весь мир у нас в кармане, потому что мы можем узнать, как основные строительные кирпичики природы взаимодействуют друг с другом.


Квантовая вселенная. Как устроено то, что мы не можем увидеть

Рис. 10.1. Некоторые способы распада пары электронов. Электроны начинают движение слева и всегда заканчивают его в одной и той же паре точек, X и Y, во время T. Эти графики соответствуют нескольким различным способам, которыми частицы могут достичь точек X и Y

Вход
Поиск по сайту
Ищем:
Календарь
Навигация