Книга Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики, страница 76. Автор книги Леонард Сасскинд

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики»

Cтраница 76

Точно так же как для баскетбольного мяча, для атомного ядра можно построить график, на котором по горизонтальной оси отложено вращение, то есть угловой момент нуклона, а его энергия — по вертикальной. Когда сорок лет назад это было сделано впервые, получившийся график удивил своей простотой: последовательность точек легла почти точно на прямую линию. Еще удивительнее было то, что у нее не наблюдалось конца.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Вращающийся нуклон

Такая диаграмма несет важную информацию о внутреннем устройстве нуклона. Две отмеченные особенности имеют огромное значение для тех, кто знает, как прочитать скрытое в них послание.

Сам факт, что нуклон может вращаться вокруг своей оси, указывает на то, что это не точечная частица; он состоит из частей, способных двигаться друг относительно друга. Но тут скрывается нечто большее. Вместо того чтобы неожиданно обрываться, последовательность, похоже, продолжается неограниченно, а значит, нуклон не разваливается, когда вращается слишком быстро. То, что удерживает его части вместе, намного мощнее сил, скрепляющих атомное ядро.

Неудивительно, что при вращении нуклон растягивается, но делает он это не так, как вращающийся кусок теста для пиццы, который превращается в двумерный блин.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Расположение точек в виде прямой линии указывает на то, что нуклон растягивается в длинный тонкий эластичный струноподобный объект.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Полвека экспериментов с нуклонами принесли уверенность в том, что это эластичные струны, которые могут растягиваться, вращаться и вибрировать, когда возбуждаются дополнительной энергией. На самом деле все адроны можно растянуть в длинные струноподобные объекты. Очевидно, все они сделаны из одной и той же липкой, тягучей, растяжимой материи — чего-то наподобие кошмарно прочной жевательной резинки, которая совершенно не рвется. Ричард Фейнман использовал термин «партоны» для описания частей нуклона, однако закрепились термины «кварки» и «глюоны», которые предложил Мюррей Гелл-Манн. Глюоны — это как раз тот липкий материал, который образует струны и не дает кваркам разлетаться [123].

Мезоны — это простейшие адроны. Открыто множество разных типов мезонов, но все они имеют одно и то же строение: один кварк и один антикварк, соединенные липкой струной.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Мезон может вибрировать, как пружина, крутиться вокруг своей оси, как чирлидерский жезл, изгибаться и складываться разными способами. Мезоны — это пример открытых струн, то есть струн, имеющих концы. В этом отношении они отличаются от резиновых колец, которые мы будем называть замкнутыми струнами.

Нуклоны состоят из трех кварков, каждый из которых присоединен к струне, а три струны сходятся в центре, как у боласа индейцев гаучо. Они тоже могут крутиться и вибрировать.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Быстрое вращение и вибрация адрона добавляют струне энергию, растягивают ее и увеличивают ее массу [124].

Существует еще один тип адронов — семейство «бескварковых» частиц, состоящих только из струн, замкнутых на себя и образующих петлю. Физики называют их глюболами, но для струнного теоретика это просто замкнутые струны.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Не похоже, чтобы кварки состояли из еще меньших частиц. Подобно электронам, они столь малы, что их размеры неизмеримы. Но струны, которые связывают кварки между собой, определенно состоят из других объектов, и эти объекты — не кварки. Липкие частицы, которые соединяются в струны, называются глюонами.

По сути, глюоны — это очень маленькие кусочки струны. Будучи чрезвычайно малыми, они тем не менее имеют два «конца» — положительный и отрицательный, — почти как если бы они были маленькими магнитами [125].


Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Математическая теория кварков и глюонов называется квантовой хромодинамикой (КХД). Может показаться, что это название связано с цветной фотографией, а не с элементарными частицами. Но терминология скоро прояснится.

Согласно математическим правилам КХД, глюон не может существовать сам по себе. По математическим законам его положительный и отрицательный концы должны быть присоединены либо к другим глюонам, либо к кваркам: каждый положительный конец должен присоединиться к отрицательному концу другого глюона или к кварку; каждый отрицательный конец должен присоединиться к положительному концу другого глюона или к антикварку; наконец, три положительных или три отрицательных конца могут соединиться вместе. По этим правилам легко можно собрать нуклоны, мезоны и глюболы.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация