Это подавление взаимодействий между частицами, уединенными в разных местах, можно сравнить с глушением международной информации в стране, которую я назову Ксенофобией, где правительство внимательно контролирует границы и средства массовой информации. В Ксенофобии не обеспечиваемая локально информация может быть получена только от иностранных гостей, которые ухитряются в нее въехать, или из газет или книг, ввозимых контрабандой.
Аналогично, разделенные браны представляют платформу, опираясь на которую можно обойти анархический принцип, удваивая таким образом набор инструментов в распоряжении у природы для того, чтобы гарантировать отсутствие нежелательных взаимодействий. Еще одним достоинством уединения является то, что оно может даже защитить частицы от эффектов нарушения симметрии. До тех пор пока нарушение симметрии происходит достаточно далеко от этих частиц, оно будет оказывать на них весьма незначительное воздействие. Когда нарушение симметрии уединяется, это напоминает карантин при заразной болезни, когда больному не разрешают свободно перемещаться. Или, возвращаясь к другой аналогии, любые драматические события, происходящие вне Ксенофобии, не окажут никакого влияния на саму страну, если не будет вмешательства извне. Без проницаемых границ Ксенофобия могла бы существовать независимо от остального мира.
Уединение и суперсимметрия
Конкретная проблема, которую мы с Раманом исследовали летом 1998 года, состояла в том, чтобы понять, как уединение могло бы работать в природе, приводя ко вселенной с нарушенной суперсимметрией и со всеми теми свойствами, что мы наблюдаем. Мы видели, что суперсимметрия может изящно защитить иерархию и гарантировать, что все большие квантово-механические вклады в массу хиггсовской частицы дадут при сложении в сумме нуль. Но, как мы видели в гл. 13, даже если суперсимметрия существует в природе, она должна быть нарушена, для того чтобы объяснить, почему мы наблюдаем частицы, но не их суперпартнеров.
К сожалению, большинство моделей с нарушенной симметрией предсказывает взаимодействия, отсутствующие в природе, и такие модели вряд ли могут быть правильными. Раман и я хотели найти физический принцип, который могла бы использовать природа для защиты себя от этих нежелательных взаимодействий, так чтобы с помощью этого принципа мы могли бы улучшить теорию.
Мы сосредоточились на нарушении суперсимметрии в модели мира на бране. Миры на бранах могут сохранять суперсимметрию. Но так же, как в четырех измерениях, суперсимметрия может быть спонтанно нарушена, когда какая-то часть теории содержит частицы, не сохраняющие суперсимметрию. Раман и я поняли, что если все частицы, ответственные за нарушение суперсимметрии, были бы отделены от частиц Стандартной модели, модель с нарушенной суперсимметрией стала бы менее проблематична.
Поэтому мы предположили, что частицы Стандартной модели удерживаются на одной бране, а частицы, ответственные за нарушение суперсимметрии, уединены на другой. Мы заметили, что в такой системе не обязательно возникают опасные взаимодействия, которые может индуцировать квантовая механика. Кроме эффектов нарушения суперсимметрии, которые могут передаваться через промежуточные частицы в балке, взаимодействия частиц Стандартной модели будут такими же, как и в теории с ненарушенной суперсимметрией. Таким образом, так же как в теории с точной суперсимметрией, нежелательные изменяющие аромат взаимодействия, несовместимые с экспериментами, не будут возникать. Частицы в балке, взаимодействующие с частицами как на нарушающей суперсимметрию бране, так и на бране Стандартной модели, будут точно определять, какие взаимодействия возможны, и среди них не будет с необходимостью запрещенных взаимодействий.
Конечно, некоторое нарушение суперсимметрии должно быть передано частицам Стандартной модели. В противном случае ничто не сможет увеличить массы суперпартнеров. Хотя мы не знаем точных значений масс суперпартнеров, экспериментальные ограничения совместно с ролью суперсимметрии в защите иерархии примерно указывают, каковы должны быть их массы.
Из экспериментальных ограничений можно получить качественные связи между массами суперпартнеров. Грубо говоря, все суперпартнеры имеют примерно одинаковые массы, и эти массы примерно равны масштабу массы слабых взаимодействий, равному 250 ГэВ. Нам нужно убедиться, что массы суперпартнеров попадают в этот интервал, но при этом нежелательные взаимодействия по-прежнему не возникают. Для того чтобы теория уединенного нарушения суперсимметрии имела шанс оказаться правильной, все должно складываться гармонично.
Ключом к успеху нашей модели было бы обнаружение промежуточной частицы, которая могла бы переносить данные о нарушении суперсимметрии к частицам Стандартной модели и придавать суперпартнерам нужные им массы.
Но мы хотели быть уверены, что наш переносчик не спровоцирует недопустимых взаимодействий.
Идеальным кандидатом выглядел гравитон. Эта частица живет в балке и взаимодействует с энергичными частицами, где бы они ни находились — на бране, нарушающей суперсимметрию, и на бране Стандартной модели. Кроме того, взаимодействия гравитона известны, они следуют из теории тяготения. Мы смогли показать, что взаимодействия гравитона, генерируя необходимые массы суперпартнеров, не приводят к взаимодействиям, перепутывающим кварки и лептоны, которые, как известно, отсутствуют в природе. Поэтому выбор гравитона выглядел многообещающе.
Когда мы рассчитывали массы суперпартнеров, которые получались в случае переносчика-гравитона, мы обнаружили, что несмотря на простоту составляющих, вычисления были на удивление тонкими. Классические вклады в нарушающие суперсимметрию массы оказались равными нулю, и нарушение суперсимметрии переносилось только квантово-механическими эффектами. Когда мы поняли это, мы назвали индуцированную гравитоном передачу нарушения суперсимметрии аномальной передачей. Мы выбрали такое название по аналогии с аномалиями, обсуждавшимися в гл. 14, так как специфические квантовомеханические эффекты нарушали симметрию, которая присутствовала бы в противном случае. Самое важное было в том, что поскольку массы суперпартнеров зависели от известных квантовых эффектов в Стандартной модели, а не от неизвестных взаимодействий в дополнительных измерениях, мы могли предсказать относительные величины масс суперпартнеров.
Потребовалось несколько дней на то, чтобы привести все это в порядок, поэтому в один и тот же день я могла переходить от разочарования к надежде. Я помню, как однажды за ужином удивила сидящих рядом, когда я совершенно обезумела от радости, так как заметила ошибку и решила задачу, не дававшую мне покоя весь день. В итоге Раман и я открыли, что если гравитация передает нарушение суперсимметрии, то уединенное нарушение суперсимметрии выполняется удивительно хорошо. Все суперпартнеры имеют правильные массы, а соотношение между массами калибрино и скварка лежит в желаемом интервале. Хотя не все работало так просто, как мы первоначально надеялись, важные соотношения между массами суперпартнеров вставали на место без введения невозможных взаимодействий, которые так досаждают другим нарушающим суперсимметрию теориям. При минимальных модификациях все работало.