Соотношение неопределенностей утверждает, что есть определенные пары величин, которые никогда не могут быть точно измерены в один и тот же момент времени. Это стало главным отличием от классической физики, в рамках которой предполагается, что, по крайней мере в принципе, все характеристики физической системы, например, координату и импульс, можно измерить с любой желаемой точностью.
Конкретные пары — это те, для которых имеет значение, какая из величин измеряется первой. Например, если вы измерили сначала положение, а затем импульс частицы (величина, определяющая как величину скорости, так и ее направление), вы получите другой результат по сравнению с тем, если сначала измеряется импульс, а затем положение. Такое невозможно в классической физике, и это, безусловно, отличается от того, к чему мы привыкли. Порядок измерений имеет значение только в рамках квантовой механики. И соотношение неопределенностей утверждает, что для двух величин, порядок измерения которых имеет значение, произведение их неопределенностей будет всегда больше, чем фундаментальная константа, а именно, постоянная Планка h (для самых любопытных, эта константа равна 6,582 · 10-25 ГэВ · с)3. Если вы настаиваете на том, чтобы знать очень точно положение частицы, вы не можете знать с той же точностью импульс, и наоборот. Не имеет значения, насколько точны ваши измерительные приборы и сколько раз вы повторяете измерения, — вы никогда не сможете одновременно измерить обе величины с очень большой точностью.
Появление постоянной Планка в соотношении неопределенностей имеет глубокий смысл. Постоянная Планка — это величина, возникающая только в квантовой механике. Напомним, что согласно квантовой механике квант энергии частицы с определенной частотой равен постоянной Планка, умноженной на эту частоту. Если бы миром правила классическая физика, постоянная Планка была бы равна нулю, и не было бы фундаментального кванта энергии.
Однако в истинном квантово-механическом описании мира постоянная Планка есть фиксированная, ненулевая величина. Именно это число характеризует неопределенность. В принципе любая отдельная величина может быть точно известна. Иногда физики, чтобы описать ситуацию, когда некоторая величина точно измерена и поэтому принимает точное значение, говорят о коллапсе волновой функции. Слово «коллапс» относится к форме волновой функции, которая уже не размыта, а принимает ненулевое значение в одном конкретном месте, так как вероятность получения при последующем измерении любого другого значения равна нулю. В этом случае, когда одна величина измерена точно, соотношение неопределенностей утверждает, что после измерения вы не можете знать вообще ничего о другой величине, образующей пару с измеренной величиной в соотношении неопределенностей. Вы получите бесконечную неопределенность значения этой другой величины. Конечно, если бы вы сначала измерили вторую величину, то первая величина стала бы для вас неизвестной. Иными словами, чем точнее вы знаете одну из величин, тем менее точным должно быть измерение другой.
Я не буду в этой книге углубляться в подробный вывод соотношения неопределенностей, однако попытаюсь тем не менее дать представление о его происхождении. Так как это несущественно для последующего изложения, вы можете сразу перейти к следующему разделу. Но, может быть, кому-то из вас захочется чуть больше узнать о тех рассуждениях, которые лежат в основе соотношения неопределенностей.
В этом выводе мы сосредоточимся на соотношении неопределенностей время — энергия, которое чуть легче объяснить и понять. Это соотношение связывает неопределенность энергии (и следовательно, согласно гипотезе Планка, частоты) с интервалом времени, характерным для скорости изменения системы. Иными словами, произведение неопределенности энергии и характерного времени изменения системы всегда будет больше постоянной Планка h.
Физическая реализация соотношения неопределенностей время — энергия возникает, например, когда вы включаете в комнате лампу и слышите помехи в находящемся рядом радиоприемнике. Включение света генерирует радиочастоты в большом интервале. Происходит это потому, что ток, идущий по проводам, изменяется очень быстро, так что интервал энергии (следовательно, частоты) должен быть большим. Ваш радиоприемник ловит эти частоты как радиопомехи.
Чтобы понять происхождение соотношения неопределенностей, рассмотрим совершенно другой пример — протекающий водопроводный кран
[71]. Мы покажем, что для точного определения скорости протечки крана нужен длительный процесс измерения, и это очень похоже на то, что утверждает соотношение неопределенностей. Кран и вода, идущая через него, содержат много атомов и являются слишком сложной системой для того, чтобы проявлять наблюдаемые квантово-механические эффекты, — они подавляются классическими процессами. Тем не менее верно, что для более точного определения частоты требуются более долгие измерения, а в этом и состоит суть соотношения неопределенностей. Квантово-механическая система делает еще шаг вперед в рассмотрении этой взаимозависимости, так как для тщательно приготовленной квантово-механической системы энергия и частота связаны между собой. Так, для квантово-механической системы связь между неопределенностью частоты и длительностью времени измерения (подобная той, которую мы собираемся рассмотреть) переводится в истинное соотношение неопределенностей между энергией и временем.
Предположим, что вода капает со скоростью примерно одна капля в секунду. С какой точностью можно измерить скорость вытекания воды, если точность вашего секундомера равна одной секунде, т. е. его показания могут отличаться от точных не более чем на одну секунду? Если вы подождете одну секунду и увидите одну каплю, вы можете подумать, что вправе сделать вывод, будто кран капает со скоростью одна капля в секунду.
Однако, так как ваш секундомер может показывать время с точностью одна секунда, ваше наблюдение не позволит точно установить, сколько времени проходит, пока кран капнет. Если ваши часы один раз тикнули, прошедшее время может быть чуть больше одной секунды, или почти равняться двум секундам. В какой же момент времени между одной и двумя секундами вы должны считать, что кран капнул? Без более точного секундомера или без увеличения времени измерений ответа не найти. С имеющимися у вас часами вы можете заключить, что капли падают со скоростью в интервале от одной капли в секунду до одной капли в две секунды. Если вы заявите, что кран капает один раз в секунду, вы можете по существу сделать 100 %-ную ошибку в своих измерениях. Иначе говоря, вы можете ошибиться в два раза.
Но предположим, что вы ждете 10 секунд, осуществляя свое измерение. Тогда за время, пока ваши часы тикнули 10 раз, из крана капнули 10 капель. Если пользоваться вашим плохим секундомером, точность которого равна 1 секунде, все, что вы можете утверждать, это то, что время, которое потребовалось на появление 10 капель, находится в интервале от 10 до 11 секунд. Ваше измерение, которое опять приведет к утверждению, что капли падают примерно по одной в секунду, будет теперь иметь ошибку лишь 10 %. Это происходит потому, что, ожидая 10 секунд, вы можете измерить частоту появления капель с точностью 1/10 секунды. Обратите внимание, что произведение времени вашего измерения (10 секунд) и неопределенности в частоте (10 % или 0,1) примерно равно 1. Заметьте также, что произведение неопределенностей в частоте и времени для измерения в первом примере, когда ошибка в измерении частоты (100 %) больше, но измерение занимает меньшее время (1 секунда), также порядка 1.