Основное допущение, лежавшее в основе проверки Стандартной модели, было очень простым. Стандартная модель предсказывает массы слабых калибровочных бозонов, а также распады и взаимодействия фундаментальных частиц. Можно проверить согласованность теории слабых взаимодействий, если убедиться, что все соотношения между этими многочисленными величинами удовлетворяют теоретическим предсказаниям. Если бы существовала новая теория с новыми частицами и новыми взаимодействиями, которые стали бы важными при энергиях вблизи масштаба слабых взаимодействий, то возникли бы новые вклады, которые могли бы привести к отклонению предсказаний теории слабых взаимодействий от их значений в рамках Стандартной модели.
Таким образом, в моделях, выходящих за рамки Стандартной модели, получаются предсказания для свойств Z-бозона, слегка отличающиеся от тех, которые даются самой Стандартной моделью. В начале 1990-х годов для предсказания проверяемых свойств Z-бозонов в этих альтернативных моделях все использовали чудовищно громоздкий метод. В этот метод было очень трудно вникнуть, а его описание занимало такое число страниц, что я еле унесла этот документ. В то время я работала ассистентом в Калифорнийском университете в Беркли. Летом 1992 года, когда я принимала участие в летнем совещании в Фермилабе, мне пришло в голову, что не может быть, чтобы связи между различными физическими величинами были столь громоздкими, как предполагалось этим многостраничным документом.
Вместе с Митчем Голденом, в то время ассистентом в Фермилабе, мы разработали более компактный способ интерпретации экспериментальных результатов в слабых взаимодействиях. Митч и я показали, как можно систематически включить эффекты новых тяжелых (до того времени не обнаруженных) частиц, добавляя в Стандартную модель всего лишь три новые величины, суммирующие все возможные вклады от моделей, отличающихся от Стандартной модели. Я провела несколько недель, пытаясь получить все это напрямую, и в конце концов интенсивная работа увенчалась успехом. Было необычайно приятно обнаружить, как можно элегантно связать все процессы, которые могут измерить Z-фабрики. Митч и я ощущали, что нам удалось разработать намного более элегантную картину связи теории и эксперимента. Все это доставляло большое удовлетворение. Однако мы не были одиноки в своем открытии. Одновременно с нами Майкл Пескин и его ассистент Такео Такеучи проделали аналогичную работу, и вскоре по нашему пути последовали другие ученые.
Но реальная история успехов относится к невероятно точным проверкам Стандартной модели на ускорителе ЛЭП. Я не буду вдаваться в детали, а расскажу две истории, которые продемонстрируют поразительную чувствительность экспериментов. Первая история касается установления точной энергии, при которой происходит соударение электронов и позитронов. Экспериментаторам необходимо было знать эту энергию, чтобы определить точное значение массы Z-бозона. Они учли все, что могло повлиять на значение этой энергии. Но даже после того как было учтено все, что только могло прийти в голову, они видели, что когда измерения проводились в определенное время, энергия частиц плавно увеличивалась и уменьшалась. Что было причиной вариаций?
Невероятно, но оказалось, что причиной были приливы в Женевском озере. Благодаря приливам и затяжным дождям в том году, уровень воды в озере то поднимался, то падал. Это, в свою очередь, оказывало влияние на окружающую местность, и в результате слегка изменяло расстояние, которое электроны и позитроны проходили в коллайдере. Как только приливный эффект был учтен, фиктивная зависимость массы Z от времени исчезла.
Вторая история также сильно впечатляет. Электроны и позитроны в коллайдере удерживаются на своих орбитах сильными магнитными полями, которые, в свою очередь, требуют большой затраты энергии. Периодически казалось, что электроны и позитроны слегка теряют регулировку, что указывало на небольшое изменение магнитных полей в коллайдере. Работник на ускорителе заметил, что эти вариации хорошо совпадают с прохождениями экспресса TGV Женева— Париж. По-видимому, возникали скачки мощности, связанные с постоянным током, которые слегка нарушали работу ускорителя. Работавший в ЦЕРНе физик из Парижа Ален Блондель рассказал мне самую забавную часть этой истории. Экспериментаторы получили реальную возможность с абсолютной достоверностью проверить эту гипотезу. Так как большинство служащих на TGV были французами, у них возникла неизбежная забастовка, так что экспериментаторы получили свободный от всплесков день!
Что стоит запомнить
• Самой важной экспериментальной установкой для изучения физики частиц является ускоритель частиц высокой энергии. Коллайдеры высокой энергии — это ускорители частиц, в которых частицы сталкиваются друг с другом. Если энергия частиц достаточно велика, то коллайдеры рождают частицы, которые слишком массивны для того, чтобы существовать в окружающем нас мире.
• Тэватрон — действующий в настоящее время коллайдер, сталкивающий протоны и антипротоны с суммарной энергией 2 ТэВ.
• Большой адронный коллайдер (БАК) в Швейцарии, энергия которого будет в семь раз больше энергии Тэватрона
[110], будет способен проверить многие модели физики частиц.
Глава 9
Симметрия: важный организующий принцип
La.
La la la la.
La la la la.
La la la la la la la la la.
Simple Minds
[111]
Афина выпустила из клеток полетать трех из своих сов. К несчастью, в тот день Икар оставил открытым верх своего автомобиля, и любопытные совы залетели внутрь салона. Самая озорная из них стала клевать обивку салона и немного ее поцарапала.
Увидев эти царапины, Икар ворвался в комнату Афины и потребовал, чтобы она впредь внимательнее следила за своими совами. Афина возразила, что почти все ее совы отличаются хорошим поведением, и только с одной из них нужно не спускать глаз, но к тому времени все совы уже сидели в своих клетках, и ни Икар, ни Афина не могли определить, которая из сов испортила обивку салона.
Стандартная модель работает на удивление хорошо, но только потому, что она является теорией, в которой кварки, лептоны и слабые калибровочные бозоны — заряженные W и нейтральный Z, являющиеся переносчиками слабого взаимодействия между слабо заряженной материей, — все имеют массу. Конечно, масса фундаментальных частиц критично важна для всего, что есть во Вселенной. Если бы материя была действительно безмассовой, она не могла бы создавать твердые тела, а структура и жизнь во Вселенной, которые мы знаем, никогда бы не возникли. Но слабые калибровочные бозоны и другие фундаментальные частицы в простейшей теории взаимодействий выглядят так, как будто они должны быть безмассовыми и перемещаться в пространстве со скоростью света.