Во втором опыте бромированию подвергли 2,6-диметиланилин. И в этом случае верх одержала аминогруппа: температура плавления ацетанилида показала, что образовался 4-бром-2,6-диметиланилин.
В третьем опыте взяли более хитрое соединение – ванилин (4-гидрокси-3-метоксибензальдегид), в молекуле которого действию метоксильной группы СН3О (ориентант 1-го рода) совместно противостояли гидроксильная группа (ориентант 1-го рода) и альдегидная группа (ориентант 2-го рода). Температура плавления ацетанилида показала, что образовался 5-бром-4-гидрокси-3-метоксибензальдегид, т. е. здесь победа досталась «коалиции союзников». Отметим, что если бы гидроксильная группа оказалась не в пара -, а в мета– положении относительно альдегидной группы, то эти группы оказались бы уже не союзниками, а противниками и победителями, без сомнения, оказались бы два ориентанта 1-го рода.
В заключение несколько слов об этом эксперименте. Чтобы не работать с опасным бромом, использовали его образование в ходе окислительно-восстановительной реакции между бромидом и броматом в кислой среде: 5Br– + BrO3– + 6H+ → 3Br2 + 3H2O. Смешивая известные количества реагентов, легко получить нужное количество брома, который тут же вступает в реакцию. Вот как много интересных фактов удалось выяснить, благодаря «простой» экзаменационной задаче.
«Ряд активности металлов Бекетова» – миф или реальность?
В учебниках химии при изложении темы «Кислоты» в том или ином виде упоминается так называемый вытеснительный ряд металлов, составление которого часто приписывается Беке́тову.
Например, в самом распространенном некогда учебнике для 8-го класса Г. Е. Рудзитиса и Ф. Г. Фельдмана (с 1989 по 1995 г. он был издан общим тиражом 8,3 млн экземпляров), говорится следующее. На опыте легко убедиться, что магний быстро реагирует с кислотами (на примере соляной кислоты), несколько медленнее – цинк, еще медленнее – железо, а медь с соляной кислотой не реагирует. «Аналогичные опыты были проделаны русским ученым Н. Н. Бекетовым, – пишут далее авторы учебника. – На основе опытов он составил вытеснительный ряд металлов: K, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb (H), Cu, Hg, Ag, Pt, Au. В этом ряду все металлы, стоящие до водорода, способны вытеснять его из кислот». Сообщается также, что Бекетов – «основоположник физической химии. В 1863 г. составил вытеснительный ряд металлов, который называется по имени ученого». Далее учащимся сообщают, что в ряду Бекетова металлы, стоящие левее, вытесняют металлы, стоящие правее, из растворов их солей. Исключение составляют самые активные металлы. Аналогичные сведения можно найти и в других школьных учебниках и пособиях, например: «Русский химик Н. Н. Бекетов исследовал все металлы и расположил их по химической активности в вытеснительный ряд (ряд активности)» и т. п.
Здесь может возникнуть несколько вопросов.
Вопрос первый. Неужели до опытов Бекетова (т. е. до 1863 г.) химики не знали, что магний, цинк, железо и ряд других металлов реагируют с кислотами с выделением водорода, а медь, ртуть, серебро, платина и золото этим свойством не обладают?
Вопрос второй. Неужели химики до Бекетова не замечали, что одни металлы могут вытеснять другие из растворов их солей?
Вопрос третий. В книге В. А. Волкова, Е. В. Вонского, Г. И. Кузнецова «Выдающиеся химики мира. Биографический справочник» (М.: Высшая школа, 1991) сказано, что Николай Николаевич Бекетов (1827–1911) – «русский физикохимик, академик… один из основоположников физической химии… Исследовал поведение органических кислот при высоких температурах. Синтезировал (1852 г.) бензуреид и ацетуреид. Выдвинул (1865 г.) ряд теоретических положений о зависимости направления реакций от состояния реагентов и внешних условий… Определил теплоты образования оксидов и хлоридов щелочных металлов, впервые получил (1870 г.) безводные оксиды щелочных металлов. Используя способность алюминия восстанавливать металлы из их оксидов, заложил основы алюминотермии… Президент Русского физико-химического общества....». И ни слова о составлении им вытеснительного ряда, вошедшего (в отличие, например, от уреидов – производных мочевины) в школьные учебники, изданные многомиллионными тиражами!
Вряд ли следует порицать авторов биографического справочника в забвении важного открытия русского ученого: ведь и Д. И. Менделеев, которого уж никак нельзя упрекнуть в непатриотизме, в своем классическом учебнике «Основы химии» тоже ни разу не упоминает вытеснительного ряда Бекетова, хотя 15 раз ссылается на различные его работы. Чтобы ответить на все эти вопросы, нам придется совершить экскурс в историю химии, разобраться в том, кто и когда предложил ряд активности металлов, какие эксперименты провел сам Н. Н. Бекетов и что же представляет собой его вытеснительный ряд.
На первые два вопроса ответить можно так. Конечно, и выделение водорода из кислот металлами, и различные примеры вытеснения ими друг друга из солей были известны задолго до рождения Бекетова. Например, в одном из руководств шведского химика и минералога Торнберна Улафа Бергмана, изданном в 1783 г., рекомендуется при анализе полиметаллических руд вытеснять из растворов свинец и серебро с помощью железных пластинок. При проведении же расчетов на содержание железа в руде следует учитывать ту его часть, которая перешла в раствор из пластинок. В том же руководстве Бергман пишет: «Металлы можно вытеснить из растворов их солей другими металлами, при этом наблюдается некоторая последовательность. В ряду цинк, железо, свинец, олово, медь, серебро и ртуть цинк вытесняет железо и т. д.». И, конечно, не Бергман впервые обнаружил эти реакции: подобные наблюдения восходят еще к алхимическим временам. Самый известный пример такой реакции использовали в Средние века шарлатаны, публично демонстрировавшие «превращение» железного гвоздя в красное «золото», когда опускали гвоздь в раствор медного купороса. Сейчас эту реакцию демонстрируют на уроках химии в школе. В чем же заключается сущность новой теории Бекетова? До появления химической термодинамики протекание реакции в том или ином направлении химики объясняли понятием сродства одних тел к другим. Тот же Бергман, основываясь на известных реакциях вытеснения, развивал с 1775 г. теорию избирательного сродства. Согласно этой теории, химическое сродство между двумя веществами при данных условиях остается постоянным и не зависит от относительных масс реагирующих веществ. То есть если тела А и В соприкасаются с телом С, то соединяться с С будет то тело, которое обладает к нему бо′льшим сродством. Например, железо имеет большее сродство к кислороду, чем ртуть, и поэтому именно оно будет в первую очередь окисляться им. Предполагалось, что направление реакции определяется исключительно химическим сродством реагирующих тел, причем реакция идет до конца. Бергман составил таблицы химического сродства, которыми химики пользовались до начала XIX в. В эти таблицы вошли, в частности, различные кислоты и основания.
Почти одновременно с Бергманом французский химик Клод Луи Бертолле развивал другую теорию. Химическое сродство также связывалось с притяжением тел друг к другу, однако выводы делались другие. По аналогии с законом всемирного притяжения Бертолле считал, что и в химии притяжение должно зависеть от массы реагирующих тел. Поэтому ход реакции и ее результат зависят не только от химического сродства реагентов, но и от их количеств. Например, если тела А и В могут реагировать с С, то тело С распределится между А и В сообразно их сродствам и массам и ни одна реакция не дойдет до конца, так как наступит равновесие, когда одновременно сосуществуют АС, ВС и свободные А и В. Очень важно, что распределение С между А и В может изменяться в зависимости от избытка А или В. Поэтому при большом избытке тело с малым сродством может почти полностью «отобрать» тело С от своего «соперника». Но если один из продуктов реакции (АС или ВС) удаляется, то реакция пройдет до конца и образуется только тот продукт, который уходит из сферы действия.