Книга 0,05. Доказательная медицина от магии до поисков бессмертия, страница 69. Автор книги Петр Талантов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «0,05. Доказательная медицина от магии до поисков бессмертия»

Cтраница 69

Такие документы обычно готовят большие группы экспертов, которые учитывают все существующие на этот момент доказательства. Часто они не подтверждают небольшие и разнонаправленные эффекты, обнаруженные отдельными исследованиями. Суммируя существующие доказательства, МАИР присваивает потенциальным канцерогенам одну из пяти групп.

группа 1 – канцерогенно для людей

группа 2А – возможно, канцерогенно

группа 2В – предположительно канцерогенно

группа 3 – информация для оценки канцерогенности недостаточна

группа 4 – вероятно, не канцерогенно для людей

В последней группе пока только одно вещество, в первой – около 900, в нее были занесены такие известные угрозы здоровью, как курение, пассивное курение, плутоний, хронический гепатит B и ультрафиолетовое излучение. Много шума наделало вышедшее в 2015 году заявление МАИР о том, что обработанное мясо (сосиски, ветчина и бекон) повышает риск колоректального рака [184] и занесено в группу 1.

Важно помнить, что принадлежность к той или иной группе говорит только о степени доказанности эффекта, но не о его силе. Последняя может варьироваться внутри группы от огромной до минимальной. В случае обработанного мяса относительный риск равен 1,18, это несопоставимо меньше, чем 30–60 для курения, и чуть ниже, чем 1,3 для пассивного курения. Если риск возникновения колоректального рака в течение жизни у тех, кто не употребляет обработанное мясо, равен примерно 5%, то у тех, кто употребляет его в значительных количествах, он повышается почти до 6%. Получается, что употребление обработанного мяса вызывает рак примерно у одного из ста употребляющих его в пищу, то есть индекс потенциального вреда равен 100. Риск для отдельно взятого человека не очень велик, хотя в масштабах человечества последствия значительны.


Конечно, главное ограничение наблюдательных исследований в том, что за статистической связью далеко не всегда скрывается причинно-следственная. В 2014 году был сделан обзор публикаций находок одного из крупнейших наблюдательных исследований в истории – Исследования здоровья медицинских сестер. Были опубликованы данные о более чем двух тысячах статистических связей между различными переменными и болезнями, при этом 58% из них были статистически значимы. Обнаруженный эффект был перепроверен в РКИ только в 19 случаях. Ожидаемо в большинстве случаев эксперимент не подтвердил предварительные находки, что не помешало многим из них появиться в самых влиятельных научных журналах и стать поводом для сенсаций в СМИ.

Впрочем, справедливо ли считать, что, в отличие от наблюдательных исследований, любая находка рандомизированного клинического эксперимента – непреложная истина? Да, двойные слепые рандомизированные эксперименты по праву считаются золотым стандартом доказательности в медицине. Но было бы наивно полагать, что они всегда дают верные и объективные ответы. Реальность клинических испытаний, в которой сталкиваются интересы производителей, ученых, регулирующих органов и пациентов, намного сложнее.

Часть пятая
Мошенники и исследователи
Глава 13
Как разрабатывают лекарства

Клинические испытания – лишь одно из последних звеньев большого и трудоемкого процесса создания и вывода нового лекарства на рынок. Процесс может растягиваться на десятилетия и стоить до миллиарда долларов, а положительный результат в конце этого пути проб и ошибок не гарантирован.

Многие представляют процесс примерно так: ученые размышляют о механизмах болезни, а потом предлагают способ повлиять на них, прервав патологический процесс или запустив недостающий. Однако для создания лекарств таким образом нашего понимания работы организма пока недостаточно. Организм сложен, и любая субстанция может подействовать не там и не так, как ожидали разработчики, не вылечив пациента или вызвав неожиданные побочные эффекты.

Доклинический поиск

Исследования, не предполагающие участия людей, называют доклиническими (или неклиническими). С них начинается разработка препарата. Ее первый этап – поиск биологической мишени. Так называют присутствующую в организме молекулу, на которую будет нацелено еще не созданное лекарство. Лекарство может влиять на течение болезни, связываясь с биологической мишенью или изменяя ее. Известно несколько сотен биологических мишеней, в большинстве случаев это белки. Например, зная, что фермент циклоксигеназа обеспечивает синтез необходимых для воспалительной реакции простагландинов, мы можем выбрать его в качестве мишени для будущего противовоспалительного препарата. Если мы найдем вещество, которое будет подавлять циклоксигеназу, то можем рассчитывать уменьшить выработку простагландинов, а значит, и воспаление.

Выбор мишени – решение важное и непростое. Оно основано на представлении о механизмах болезни, которое может быть ошибочным или неполным. И всегда есть риск, что разработчики узнают об этом лишь на самых поздних этапах. Нельзя также исключать, что выбранная мишень участвует не только в патологическом процессе, на который мы хотим повлиять, но и в реализации каких-либо важных функций. Тогда, влияя на нее, мы можем вызвать нежелательные эффекты, которые перевесят любую пользу.

Когда биологическая мишень выбрана, начинается поиск молекулы, способной на нее влиять. Молекулы лекарственных веществ делят на две основные группы. Большинство представленных на рынке лекарств относится к малым молекулам (или низкомолекулярным). Это молекулы небольшого размера, вес которых не превышает 900 дальтон [185]. Такая граница выбрана, поскольку молекулы с размерами в пределах этого порога могут легко проникать через клеточную мембрану и действовать на мишени не только снаружи, но и внутри клетки. Пример такого вещества – состоящий всего из 21 атома аспирин. Биологическими молекулами называют вещества, размер молекул которых превышает порог в 900 дальтон, большинство из них – белки. Они не могут проникать в клетку и действуют только на мишени вне ее или на ее поверхности, скажем, на клеточные рецепторы. Пример – состоящее из 25 тысяч атомов антитело. В процессах поиска малых и биологических молекул есть некоторые отличия.

Поиск малых молекул, способных влиять на биологическую мишень, ведут путем перебора огромного количества химических веществ. Сейчас этот процесс в значительной степени автоматизирован и компьютеризован. Те компании, которые могут себе это позволить, используют роботизированные системы высокопроизводительного скрининга, позволяющие тестировать целые библиотеки веществ, содержащие до сотен тысяч компонентов. Библиотеки создают как путем случайных модификаций, так и с помощью компьютерных систем, которые просчитывают, какие свойства вещества повысят вероятность его взаимодействия с мишенью. Для этого же в последнее время пытаются применять и трехмерное моделирование.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация